Pr0.6Sr0.4CoO3-xPr2NiO4复合阴极的性能优化任务书
2020-06-29 20:23:29
1. 毕业设计(论文)的内容和要求
本论文以固体氧化物燃料电池为研究背景,研究重点在于复合阴极材料,主要针对pr0.6sr0.4coo3-xpr2nio4复合阴极的性能进行优化,以期提高阴极材料在中温范围内(600-800℃)的适用性。
本论文的研究课题名称为”pr0.6sr0.4coo3-xpr2nio4复合阴极的性能优化”。
拟采用低温自燃烧法制备pr0.6sr0.4coo3-xpr2nio4复合阴极材料,研究不同掺杂方式及掺杂量对电极材料性能的影响,包括电化学性能、电性能以及热匹配性能等。
2. 参考文献
[1] Shao Zong-ping, Zhou Wei, Zhu Zhong-hua. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells[J]. Progress in Materials Science, 2012, 57(4): 804-874. [2] 韩敏芳. 固体氧化物燃料电池材料及制备[M]. 北京:科学出版社,2004. [3] Hildenbrand Nicolas, Nammensma Pieter, Blank Dave H A, et al. Influence of configuration and microstructure on performance of La2NiO4 δ intermediate-temperature solid oxide fuel cells cathodes[J]. Journal of Power Sources, 2013, 238: 442-453. [4] 邵宗平. 中低温固体氧化物燃料电池阴极材料[J].化学进展, 2011, 23(2/3): 418~429. [5] Jiao Yi, Tang Shi-yun, Wang Jian-li, et al. Effects of different preparation methods on the properties of CeO2-ZrO2-Al2O3[J]. Journal of Inorganic Materials, 2011, 26(8): 813-818. [6] Guo Wei-min, Pei Jun-yan, Liang Hong-yu, et al. Preparation and performance of anode-supported LaGaO3-based electrolyte solid oxide fuel cells with Sm-doped CeO2 buffer layers[J]. Journal of Inorganic Materials, 2011, 26(7): 685-690. [7]Aguadero A, Alonso J A, Escudero M J, et al.Evaluation of the La2Ni1-xCuxO4 δ system as SOFC cathodematerial with 8YSZ and LSGM as electrolytes[J]. Solid State Ionics ,2008, 179: 393-400. [8] A P Khandale, S S Bhogal. Effect of Sr doping on structural, electrical and electrochemical properties of Nd2CuO4 for IT-SOFC application[J]. Solid State Ionics, 2014, 262(10): 416-420. [9] Wan J, Goodenough J B, Zhu J H, et al. Nd2-xLaxNiO4 δ , a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material[J]. Solid State Ionics, 2007, 178(3/4): 281-286. [10] Song Shin Ae, Jang Seong-Cheol, Han Jonghee, et al. Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells[J]. Journal of Power Sources, 2011, 196(23): 9900-9905. [11] Jin Fangjun, Shen Yu, Wang Rui, et al. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 δ as cathode material for intermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources, 2013, 234: 244-251. [12] West Matthew, Manthiram Arumugam. Layered LnBa1#8722;xSrxCoCuO5 δ (Ln = Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3364-3372. [13] Liu Bang-wu, Zhang Yue, Zhang Li-min. Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3#8722;δ cathode for solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(2): 1008-1014. [14] Seonhye Park, Sihyuk Choi, Jeeyoung Shin, et al. Electrochemical investigation of strontium doping effect on high performance Pr1#8722;xSrxCoO3#8722;δ (x=0.1, 0.3, 0.5, and 0.7) cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2012, 210: 172-177. 学生在此基础上自行查阅相关文献至少10篇。
3. 毕业设计(论文)进程安排
2017.12.11-2017.12.25 了解课题背景,查阅相关文献 2017.12.26-2018.1.7 文献综述,翻译英文文献 2018.1.8-2018.1.13 完成开题,确定实验方案 2018.3.11-2018.3.18 实验准备 2018.3.19-2018.3.25 Pr0.6Sr0.4CoO3、Pr2NiO4及Ce0.8Sm0.2O1.9 等电极粉体的制备及物相分析 2018.3.26-2018.3.31 Pr0.6Sr0.4CoO3与Ce0.8Sm0.2O1.9的化学相容性测试及PSC-xPr2NiO4复合阴极制备 2018.4.1-2018.4.30 PSC-xPr2NiO4复合阴极的各项性能测试 2018.5.1-2018.5.19 分析数据,确定PSC-xPr2NiO4复合体系的最佳掺杂量x 2018.5.20-2018.6.12 实验数据分析,撰写毕业论文 2018.6.13-2018.6.18 论文答辩