登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

Back-wall 型CIGS电池的模拟计算任务书

 2020-06-30 21:11:05  

1. 毕业设计(论文)的内容和要求

铜铟镓硒(cigs)光伏电池具有高光吸收系数、高转换效率、可调的禁带宽度、高稳定性、较强的抗辐射性能等优点, 被认为是未来最有前途的太阳能电池之一。

虽然传统的cigs电池已经进入商业市场,但与晶硅电池相比,电池效率偏低,成本偏高,所以制备低成本高效率器件十分必要。

跟传统的cigs电池相比,back-wall型电池制备应该更容易,并且入射光首先进入cigs层,能更有效提高光吸收,从而能进一步提高电池的短路电流密度,所以back-wall型器件结构应该是提高电池效率同时降低成本的一个技术途径。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Larsen J K, Simchi H, Xin P, et al. Backwall superstrate configuration for ultrathin Cu(In,Ga)Se2 solar cells[J]. Applied Physics Letters. 2014, 104(3): 33901. [2] Nakada T, Hirabayashi Y, Tokado T, et al. Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts[J]. Solar Energy. 2004, 77(6): 739-747. [3] Bouchama I, Djessas K, Djahli F, et al. Simulation approach for studying the performances of original superstrate CIGS thin films solar cells[J]. Thin Solid Films. 2011, 519(21): 7280-7283. [4] Abou-Ras D, Kostorz G, Bremaud D, et al. Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells[J]. Thin Solid Films. 2005, 480-481: 433-438. [5] Mattheis J, Rostan P J, Rau U, et al. Carrier collection in Cu(In,Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts[J]. Solar Energy Materials and Solar Cells. 2007, 91(8): 689-695. [6] Decock K, Khelifi S, Burgelman M. Analytical versus numerical analysis of back grading in CIGS solar cells[J]. Solar Energy Materials and Solar Cells. 2011, 95(6): 1550-1554. [7] Zhang L, Liu F, Li F, et al. Structural, optical and electrical properties of low-temperature deposition Cu(InxGa1#8722;x)Se2 thin films[J]. Solar Energy Materials and Solar Cells. 2012, 99: 356-361. [8] Heinemann M D, Ruske F, Greiner D, et al. Advantageous light management in Cu(In,Ga)Se2 superstrate solar cells[J]. Solar Energy Materials and Solar Cells. 2016, 150: 76-81. [9] Xin P, Larsen J K, Deng F, et al. Development of Cu(In,Ga)Se 2 superstrate devices with alternative buffer layers[J]. Solar Energy Materials and Solar Cells. 2016, 157: 85-92. [10] Chantana J, Watanabe T, Teraji S, et al. Influence of minimum position in [Ga]/([Ga] [In]) profile of Cu(In,Ga)Se 2 on flexible stainless steel substrate on its photovoltaic performances[J]. Solar Energy Materials and Solar Cells. 2016, 157: 750-756. [11] Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics: Research and Applications. 2011, 19(7): 894-897. [12] Chelvanathan P, Hossain M I, Amin N. Performance analysis of copper#8211;indium#8211;gallium#8211;diselenide (CIGS) solar cells with various buffer layers by SCAPS[J]. Current Applied Physics. 2010, 10(3): S387-S391. [13] Chiril#259; A, Buecheler S, Pianezzi F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films[J]. Nature Materials. 2011, 10(11): 857-861. [14] Nakada T. Invited Paper: CIGS-based thin film solar cells and modules: Unique material properties[J]. Electronic Materials Letters. 2012, 8(2): 179-185. [15] Burgelman M, Decock K, Khelifi S, et al. Advanced electrical simulation of thin film solar cells[J]. Thin Solid Films. 2013, 535: 296-301. [16] Powalla M, Jackson P, Witte W, et al. High-efficiency Cu(In,Ga)Se2 cells and modules[J]. Solar Energy Materials and Solar Cells. 2013, 119: 51-58. [17] Naghavi N, Spiering S, Powalla M, et al. High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD)[J]. Progress in Photovoltaics: Research and Applications. 2003, 11(7): 437-443. [18] Klenk R, Steigert A, Rissom T, et al. Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%[J]. Progress in Photovoltaics: Research and Applications. 2014, 22(2): 161-165.

3. 毕业设计(论文)进程安排

2017.12.11-2018.1.1, 文献调研,完成开题报告 1.2-1.12,完成英文翻译 3.12-4.21,深刻理解CIGS太阳能电池原理,学习和掌握SCAPS软件 4.22-5.5,进行模拟、初步分析结果和中期检查 5.6-5.26,进一步完善模拟结果,并分析全部数据 5.27-6.2,论文撰写 6.3-6.6,论文修改 6.7-6.10,准备PPT,答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图