HCS MM工艺对Mg-10 at% Al合金水解制氢性能的影响及其机理任务书
2020-07-02 22:39:42
1. 毕业设计(论文)的内容和要求
mgh2是一种高效水解制氢材料,采用氢化燃烧合成法(hcs)法可以合成高纯度的mgh2,但是比较耗时耗能,这是因为mg颗粒表面氧化膜的存在能够阻止氢气进入颗粒内部与镁发生氢化反应。
实验发现添加10 at.% al能够明显明显降低mg氢化所需时间,且al本事也是一种制氢材料,添加少量的al不会明显降低制氢量。
本课题采用氢化燃烧合成复合机械球磨法(hcs mm)制备的mg-10 at.% al水解制氢,为克服生成mg(oh)2致密钝化膜阻止反应充分进行的不足,拟研究mg-10 at.% al球磨处理、水解反应溶液成分和反应温度等对水解动力学性能以及水解制氢量的影响,并分析其内在机理联系。
2. 参考文献
[1] Felderhoff M, Weidenthaler C, Helmolt R, et al. Hydrogen storage: the remaining scientific and technological challenges [J]. Phys. Chem. Chem. Phys., 2007, 9(21): 2643-2653. [2] Grosjean M-H, Zidoune M, Rou#233; L, et al. Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials [J]. International Journal of Hydrogen Energy, 2006, 31: 109-119. [3] Ross D K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars [J]. Vacuum, 2006, 80(10): 1084-1089. [4] Y. kojima, Suzuki, Y. kawai. Hydrogen generation by hydrolysis reaction of magnesium hydride [J]. Journal of materials science, 2004, 39: 2227-2229. [5] J. Huot, G. Liang, R. Schulz. Magnesium-based nanocomposites chemical hydrides [J]. Journal ofAlloys and Compounds, 2003, 1-2(353): 12-15. [6] Varin R A, Li S, Calka A. Environmental degradation by hydrolysis of nanostructured β-MgH2 hydride synthesized by controlled reactive mechanical milling (CRMM) of Mg [J]. Journal of Alloys and Compounds, 2004, 376(1-2):222-231. [7] Tessier J-P, Palau P, Huo J, et al. Hydrogen production and crystal structure of ball-milled MgH2-Ca and MgH2-CaH2 mixtures [J]. Journal of Alloys and Compounds,2004, 376(1/2): 180-185. [8] Z#252;ttel A. Hydrogen storage methods [J]. Naturwissenschaften, 2004, 91:157-172. [9] 胡子龙. 贮氢材料 [M]. 北京: 化学工业出版社, 2002. [10] Schlapbach L, Z#252;ttel A. Hydrogen-storage materials for mobile application [J]. Nature, 2001, 414: 353-358. [11] 张健. 镁及其合金氢化物吸放氢性能及电子机制研究 [D]. 长沙: 湖南大学, 2009. [12] 叶素云. 纳米化对Mg基储氢合金的热力学和储氢性能的影响 [D]. 广州: 华南理工大学, 2010. [13] 董汉武. 若干镁基储氢体系的相结构分析及其储氢性能 [D]. 广州: 华南理工大学, 2011. [14] Wei L J, Cui Z W, Zhu Y F, et al. Catalytic effect of multi-wall carbon nanotubes supported nickel on hydrogen storage properties of Mg99Ni prepared by hydriding combustion synthesis [J]. Mater. Trans., 2014, 55: 1149-1155. [15] Kalisvaart W P, Harrower C T, Haagsma J, et al. Hydrogen storage in binary and ternary Mg-based alloys: a comprehensive experimental study [J]. Int. J. Hydrogen Energy, 2010, 35: 2091-2103. [16] Liu Y, Alexander R, Rigos S, et al. A study of parylene coated Pd/Mg nanoblabes for reversible hydrogen storage [J]. Int. J. Hydrogen Energy, 2013, 38(12): 5019-5029. [17] Ruminski A M, Bardhan R, Brand A, et al. Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions [J]. Energy Environ. Sci., 2013, 6: 3267-3271. [18] Shao H Y, Ma W G, Kohno M, et al. Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures [J]. Int. J. Hydrogen Energy, 2014, 39(18): 9893-9898. [19] Liu Y N, Zou J X, Zeng X Q, et al. Study on hydrogen storage properties of Mg-X (X=Fe, Co, V) nanocomposites co-precipitated from solution [J]. RSC Adv., 2015, 5, 7687-7696. [20] Park J T, Xu X R, Wang J, et al. A small-scale and portable 50 W PEMFC system that automatically generates hydrogen from a mixture of Al, CaO, NaOH and sodium CMC in water without external power supply[J]. International Journal of Hydrogen Energy, 2013, 38:10511-10518. [21] 王纪忠,王靖,朴延泰. 使用制氢剂及便携式高分子燃料电池的小型发电机. 中国: CN102324794A [P], 2011. [22] 氢能协会[日]. 氢能技术[M]. 宋永臣, 宁亚东, 金东旭, 译. 北京: 科学出版社, 2009. [23] Xu Y, Chun D H, Jang J H, et al. Catalytic activity of oxidation-reduction pre-treated Ni3Al for methane steam reforming[J]. Advanced Materials Research, 2010, 89:645-650. [24] Strouml;bel R, Garche J, Moseley P T, et al. Hydrogen storage by carbon materials[J]. Journal of Power Sources, 2006, 159:781-801. [25] Tamura T, Tominaga Y, Matsumoto K, et al. Protium absorption properties of Ti#8211;V#8211;Cr#8211;Mn alloys with a b.c.c. structure[J]. Journal of Alloys and Compounds, 2002, 330#8211;332:522-525. [26] Sifer N, Gardner K. An analysis of hydrogen production from ammonia hydride hydrogen generators for use in military fuel cell environments[J]. Journal of Power Sources, 2004, 132:135-138. [27] Kreevoy M M, Jacobson R W. The rate of decomposition of sodium borohydride in basic aqueous solution[J]. Ventron Alembic, 1979, 15:2-3. [28] Minkina V G, Shabunya S I, Kalinin V I, et al. Long-term stability of sodium borohydrides for hydrogen generation[J]. International Journal of Hydrogen Energy, 2008, 33:5629-5635. [29] Liu C H, Chen B H, Hsueh C L, et al. Hydrogen genenration from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts[J]. International Journal of Hydrogen Energy, 2009, 34:2153-2163. [30] Su C C, Lu M C, Wang S L, et al. Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride[J]. RSC Advances, 2012, 2:2073-2079.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2017.12.16~ 2018.01.13 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献,完成外文翻译,并撰写开题报告; 2018.02.25 ~ 2018.03.15 研究Mg-10 at.% Al球磨处理对其水解制氢性能的影响; 2018.03.16 ~ 2018.04.10 研究Mg-10 at.% Al水解反应溶液成分和反应温度等对其水解制氢性能的影响; 2018.04. 11~ 2018.04.20 中期数据整理及答辩; 2018.04.21 ~ 2018.05.15 通过不同表征方法探索不同工艺对Mg-10 at.% Al水解性能影响的内在机理; 2018.05.16~ 2018.05.29 数据处理及规律总结,撰写毕业论文; 2018.05.30~ 2018.06.08 完成毕业论文及答辩; 2018.06.09~ 2018.06.14 总结、归档。