不同晶型Ni的制备及对MgH2储氢性能影响任务书
2020-07-02 22:40:10
1. 毕业设计(论文)的内容和要求
内容:镁基储氢材料是当前最具潜在应用价值的固态储氢材料之一,其成本低,储氢容量高;但是较高的热力学稳定性和缓慢的动力学限制了镁基材料的实际应用。研究表明,纳米化和催化可以有效改善镁基储氢材料的性能,前期研究主要集中在Ni的形貌和尺寸等对镁基储氢材料的影响,而关于不同晶型的Ni对镁基储氢材料的影响研究尚有不足。因此,本课题在已有研究基础上,制备不同晶型Ni基催化剂,研究不同晶型Ni对Mg基氢化物储氢性能的影响。
要求:要求学生能够独立翻译一篇外文文献,在广泛阅读国内外文献的基础上,撰写文献综述,撰写开题报告,同时设计实验的具体开展步骤,并有序展开实验研究,能够完成样品的制备和性结构性能测试,并解释实验现象。最后撰写毕业论文。
2. 参考文献
(1) Mohtadi, R.; Orimo, S. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2016, 2 (3), 16091.
(2) He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1 (12), 16059.
(3) Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y. S.; Guo, J.; Urban, J. J. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat. Commun. 2016, 7, 10804.
(4) Pang, Y. P.; Liu, Y. F.; Gao, M. X.; Ouyang, L. Z.; Liu, J. W.; Wang, H.; Zhu, M.; Pan, H. G. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures. Nat. Commun. 2014, 5, 3519.
(5) Huot, J.; Ravnsb鎘, D. B.; Zhang, J.; Cuevas, F.; Latroche, M.; Jensen, T. R. Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 2013, 58 (1), 30-75.
(6) Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414 (6861), 353-8.
(7) Liu, Y. F.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Tailoring thermodynamics and kinetics for hydrogen storage in complex hydrides towards applications. Chem. Rec. 2016, 16 (1), 189-204.
(8) Shao, H. Y.; He, L. Q.; Lin, H. J.; Li, H. W. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technology 2017, 5, 1-15.
(9) Liu, T.; Qin, C. G.; Zhang, T. W.; Cao, Y. R.; Zhu, M.; Li, X. G. Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma杕etal reaction. J. Mater. Chem. A 2012, 22 (37), 19831.
(10) Si, T. Z.; Cao, Y.; Zhang, Q. A.; Sun, D. L.; Ouyang, L. Z.; Zhu, M. Enhanced hydrogen storage properties of a Mg-Ag alloy with solid dissolution of indium: a comparative study. J. Mater. Chem. A 2015, 3 (16), 8581-8589.
(11) Zhang, J. G.; Zhu, Y. F.; Lin, H. J.; Liu, Y. N.; Zhang, Y.; Li, S. Y.; Ma, Z. L.; Li, L. Q. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 2017, 29 (24), 1700760.
(12) Ouyang, L. Z.; Yang, X. S.; Dong, H. W.; Zhu, M. Structure and hydrogen storage properties of Mg3Pr and Mg3PrNi0.1 alloys. Scripta Mater. 2009, 61 (4), 339-342.
(13) Zhou, C. S.; Fang, Z. Z.; Lu, J.; Zhang, X. Y. Thermodynamic and kinetic destabilization of magnesium hydride using Mg-In solid solution alloys. J. Am. Chem. Soc. 2013, 135 (30), 10982-10985.
(14) Jeon, K. J.; Moon, H. R.; Ruminski, A. M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J. J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 2011, 10 (4), 286-290.
(15) He, D. L.; Wang, Y. L.; Wu, C. Z.; Li, Q.; Ding, W. Z.; Sun, C. H. Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement. Appl. Phys. Lett. 2015, 107 (24), 243907.
(16) Xia, G. L.; Tan, Y. B.; Chen, X. W.; Sun, D. L.; Guo, Z. P.; Liu, H. K.; Ouyang, L. Z.; Zhu, M.; Yu, X. B. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater. 2015, 27 (39), 5981-5988.
(17) Norberg, N. S.; Arthur, T. S.; Fredrick, S. J.; Prieto, A. L. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 2011, 133 (28), 10679-10681.
(18) Huang, J. J.; Gao, M. X.; Li, Z. L.; Cheng, X. B.; Gu, J.; Liu, Y. F.; Pan, H. G. Destabilization of combined Ca(BH4)2 and Mg(AlH4)2 for improved hydrogen storage properties. J. Alloy. Compd. 2016, 670, 135-143.
(19) Sun, W. P.; Zhang, Y.; Zhu, Y. F.; Zhuang, X. Y.; Dong, J.; Qu, Y.; Guo, X. L.; Chen, J.; Wang, Z. M.; Li, L. Q. The hydrogen storage performance of a 4MgH2-LiAlH4-TiH2 composite system. J. Alloy. Compd. 2016, 676, 557-564.
(20) Ouyang, L. Z.; Yang, X. S.; Zhu, M.; Liu, J. W.; Dong, H. W.; Sun, D. L.; Zou, J.; Yao, X. D. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites. J. Phys. Chem. C 2014, 118 (15), 7808-7820.
(21) Huot, J.; Tremblay, M. L.; Schulz, R. Synthesis of nanocrystalline hydrogen storage materials. J. Alloy. Compd. 2003, 356-357, 603-607.
(22) Zhang, B.; Wu, Y. Recent advances in improving performances of the lightweight complex hydrides Li-Mg-N-H system. Pro. Nat. Sci. Mater. Int. 2017, 27 (1), 21-33.
(23) Nielsen, T. K.; B鰏enberg, U.; Gosalawit, R.; Dornheim, M.; Cerenius, Y.; Besenbacher, F.; Jensen, T. R. A reversible nanoconfined chemical reaction. ACS Nano 2010, 4 (7), 3903-3908.
(24) Bhatnagar, A.; Pandey, S. K.; Vishwakarma, A. K.; Singh, S.; Shukla, V.; Soni, P. K.; Shaz, M. A.; Srivastava, O. N. Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg. J. Mater. Chem. A 2016, 4 (38), 14761-14772.
(25) Liu, Y. F.; Du, H. F.; Zhang, X.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Comm. 2016, 52 (4), 705-708.
(26) Liu, T.; Chen, C. G.; Wang, F.; Li, X. G. Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature. J. Power Sources 2014, 267, 69-77.
(27) Lai, Q. W.; Paskevicius, M.; Sheppard, D. A.; Buckley, C. E.; Thornton, A. W.; Hill, M. R.; Gu, Q. F.; Mao, J. F.; Huang, Z. G.; Liu, H. K.; Guo, Z. P.; Banerjee, A.; Chakraborty, S.; Ahuja, R.; Aguey-Zinsou, K.-F. Hydrogen storage materials for mobile and stationary applications: Current state of the art. ChemSusChem 2015, 8, 2789-2825.
(28) Cui, J.; Wang, H.; Liu, J. W.; Ouyang, L. Z.; Zhang, Q. A.; Sun, D. L.; Yao, X. D.; Zhu, M. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 2013, 1 (18), 5603.
(29) Liu, G.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Understanding the role of few-layer graphene nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride. ACS Appl. Mater. Interfaces 2014, 6 (14), 11038-11046.
(30) Lu, J.; Choi, Y. J.; Fang, Z. Z.; Sohn, H. Y.; R鰊nebro, E. Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH2. J. Am. Chem. Soc. 2010, 132, 6619-6617.
(31) Giusepponi, S.; Celino, M. The role of nickel catalyst in hydrogen desorption from MgH2: A DFT study. Int. J. Hydrogen Energy 2015, 40 (30), 9326-9334.
(32) Dai, J. H.; Song, Y.; Yang, R. First Principles Study on Hydrogen Desorption from a Metal (=Al, Ti, Mn, Ni) Doped MgH2. J. Phys. Chem. C 2010, 114, 11328-11334.
(33) Zhou, C. Y.; Szpunar, J. A. Hydrogen storage performance in Pd/Graphene nanocomposites. ACS Appl. Mater. Interfaces 2016, 8 (39), 25933-25940.
(34) Xie, X. B.; Ma, X. J.; Liu, P.; Shang, J. X.; Li, X. G.; Liu, T. Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS. ACS Appl. Mater. Interfaces 2017, 9 (7), 5937-5946.
(35) Jia, Y.; Sun, C. H.; Peng, Y.; Fang, W. Q.; Yan, X. C.; Yang, D. J.; Zou, J.; Mao, S. S.; Yao, X. D. Metallic Ni nanocatalyst in situ formed from a metal-organic-framework by mechanochemical reaction for hydrogen storage in magnesium. J. Mater. Chem. A 2015, 3 (16), 8294-8299.
(36) El-Eskandarany, M. S.; Shaban, E.; Ali, N.; Aldakheel, F.; Alkandary, A. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles. Sci. Rep. 2016, 6, 37335.
(37) Lillo-R骴enas, M. A.; Guo, Z. X.; Aguey-Zinsou, K. F.; Cazorla-Amor髎, D.; Linares-Solano, A. Effects of different carbon materials on MgH2 decomposition. Carbon 2008, 46 (1), 126-137.
(38) Lillo-R骴enas, M. A.; Aguey-Zinsou, K. F.; Cazorla-Amor髎, D.; Linares-Solano, A.; Guo, Z. X. Effects of carbon-supported nickel catalysts on MgH2 decomposition. J. Phys. Chem. C 2008, 112 (15), 5984-5992.
(39) Huang, X.; Xiao, X. Z.; Zhang, W.; Fan, X. L.; Zhang, L. T.; Cheng, C. J.; Li, S. Q.; Ge, H. W.; Wang, Q. D.; Chen, L. X. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Phys. Chem. Chem. Phys. 2017, 19 (5), 4019-4029.
(40) Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114 (15), 7610-30.
(41) Zhu, Y. F.; Liu, Z. B.; Yang, Y.; Gu, H.; Li, L. Q.; Cai, M. Hydrogen storage properties of Mg朜i朇 system hydrogen storage materials prepared by hydriding combustion synthesis and mechanical milling. Int. J. Hydrogen Energy 2010, 35 (12), 6350-6355.
(42) Wan, L. F.; Liu, Y. S.; Cho, E. S.; Forster, J. D.; Jeong, S.; Wang, H. T.; Urban, J. J.; Guo, J.; Prendergast, D. Atomically thin interfacial suboxide key to hydrogen storage performance enhancements of magnesium nanoparticles encapsulated in reduced graphene oxide. Nano Lett. 2017, 17 (9), 5540-5545.
(43) Lu, J.; Choi, Y. J.; Fang, Z. Z.; Sohn, H. Y.; R鰊nebro, E. Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high- pressure milling. J. Am. Chem. Soc. 2009, 131, 15843-15852.
(44) Mattos, T. G.; Aar鉶 Reis, F. D. A. Effects of diffusion and particle size in a kinetic model of catalyzed reactions. J. Catal. 2009, 263 (1), 67-74.
(45) Lin, H. J.; Tang, J. J.; Yu, Q.; Wang, H.; Ouyang, L. Z.; Zhao, Y. J.; Liu, J. W.; Wang, W. H.; Zhu, M. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump. Nano Energy 2014, 9, 80-87.
(46) Yu, X. B.; Tang, Z. W.; Sun, D. L.; Ouyang, L. Z.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 2017, 88, 1-48.
(47) Aminorroaya, S.; Ranjbar, A.; Cho, Y. H.; Liu, H. K.; Dahle, A. K. Hydrogen storage properties of Mg-10 wt% Ni alloy co-catalysed with niobium and multi-walled carbon nanotubes. Int. J. Hydrogen Energy 2011, 36 (1), 571-579.
(48) Matusita, K.; Sakka, S. Kinetic study of crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. J. Non-Cryst. Solids 1980, 38amp;39, 741-746.
3. 毕业设计(论文)进程安排
起始日期 |
设计(论文)各阶段工作内容 |
备 注 |
2017.12.14~ 2017.12.31 |
查阅国内外相关文献 |
|
2017.1.1 ~ 2018.1.12 |
开题报告、文献综述和文献翻译 |
|
2018.2.26 ~ 2018.3.25 |
不同晶型Ni催化剂的制备及表征 |
|
2018.3.25 ~ 2018.4.20 |
MgH2-Ni复合体系的制备及初步表征 |
|
2018.4.21~ 2016.5.15 |
复合体系的结构表征和储氢性能测试,中期检查 |
|
2018.5.16~ 2018.5.31 |
撰写毕业论文 |
|
2016.6.01~ 2016.6.14 |
完成毕业论文及答辩 |
|
2016.6.15~ 2016.7.13 |
总结、归档 |