钙钛矿太阳电池用NiO空穴传输层的制备与性能研究毕业论文
2021-04-12 20:39:35
摘 要
有机-无机卤化物钙钛矿太阳能电池由于光电性能优异、制备工艺简单、原料来源丰富等特性而备受关注,主要有正式(n-i-p)和反式(p-i-n)两种结构。根据报道,正式结构具有较高的光电转换效率,最高已达24.2%,但是其回滞现象相当严重,反式结构则很好地解决了回滞现象带来的问题,但该结构的空穴传输层常使用相对昂贵的PTAA、PEDOT:PSS等材料,这很大程度上限制了钙钛矿太阳能电池的商业化进程,寻找一种替代性的廉价空穴传输层材料是当务之急。NiO是一种易于制备的p型半导体,能级与反式钙钛矿太阳能电池器件匹配良好,是一种有前景的空穴传输层替代材料。本论文采用旋涂和磁控溅射两种方法制备纳米级NiO薄膜作为空穴传输层,通过优化旋涂溶液浓度、退火温度等工艺参数来改善器件的光电性能。最终测试所制得器件的最高光电转化效率(PCE)达到13.47%,稳定性也较好。
关键词:钙钛矿太阳能电池;反式结构;空穴传输层;旋涂;氧化镍。
Abstract
The organic-inorganic halide perovskite solar cell has attracted much attention due to its excellent photoelectric performance, simple preparation process, and abundant raw material sources. Perovskite solar cell has mainly two structures, which is formal (n-i-p) and inverted (p-i-n) structures. According to report, the formal structure has a high photoelectric conversion efficiency, the highest has reached 24.2%, but its hysteresis effect is quite serious. Luckily, the inverted structure solves the problem caused by the hysteresis effect well. But inverted structure often uses relatively expensive materials as its hole transport layer, such as PTAA, PEDOT: PSS et. al. It largely limits the commercialization of perovskite solar cells. It’s imperative to find an alternative low-cost hole transport layer material. NiO is an easy-to-prepare p-type semiconductor with well-matched energy levels in the inverted structure. It is a promising alternative to traditional hole transport layer. In this thesis, nano-scale NiO films were prepared by spin coating and magnetron sputtering as hole transporting layers. The photoelectric properties of the modules were improved by optimizing the process parameters such as precursor solution concentration and annealing temperature. The highest photoelectric conversion efficiency(PCE) of the module reached 13.47%, and the stability was also good.
Key Words:perovskite solar cell;inverted structure; hole transport layer;spin-coating;NiO.
目 录
第1章 绪论 1
1.1引言 1
1.2 钙钛矿太阳能电池原理 2
1.2.1 钙钛矿材料的基本结构和性质 2
1.2.2 钙钛矿太阳能电池的结构 2
1.2.3 钙钛矿太阳能电池的工作原理 3
1.2.4 反式平面结构(p-i-n)钙钛矿太阳能电池 4
1.3 钙钛矿太阳能电池的层次结构 4
1.3.1 电子传输层(ETL) 4
1.3.2 空穴传输层(HTL) 4
1.3.3 钙钛矿光吸收层 4
1.3.4 电极材料 5
1.4 钙钛矿太阳能电池的电学性能参数 5
1.4.1 开路电压 5
1.4.2 短路电流 5
1.4.3 填充因子 5
1.5 NiO空穴传输层的制备工艺 6
1.6 钙钛矿太阳能电池(PSC)面临的主要问题 6
1.7 本论文的研究内容与意义 6
第2章 基于FTO-NiO的钙钛矿太阳能电池的制备 8
2.1 实验试剂与仪器 8
2.1.1 实验试剂 8
2.1.2 实验仪器 9
2.2 实验过程 9
2.2.1 空穴传输层的制备 9
2.2.1.1旋涂法制备NiO层 9
2.2.1.2磁控溅射法制备NiO层 10
2.2.1.3本实验的组别设置 11
2.2.2 钙钛矿层的制备 11
2.2.3.1 四混钙钛矿溶液的配制 11
2.2.3.2 旋涂钙钛矿层工艺过程 12
2.2.3 电子传输层及金属电极的制备 12
2.2.4.1 电子传输层制备 12
2.2.4.2 金属电极的制备 12
第3章 NiO空穴传输层电池的性能表征与结果讨论 14
3.1 性能测试及表征 14
3.1.1 紫外-可见分光度计(UV-VIS) 14
3.1.2 X射线衍射分析(XRD) 14
3.1.3 扫描电子显微镜(SEM) 15
3.1.4椭偏仪光谱拟合 16
3.1.5 J-V曲线测试 17
3.1.6 J-V曲线稳态输出测试 21
3.1.7 光电转化效率测试(IPCE) 22
3.2 本章总结 23
第4章 结论与展望 24
4.1结论 24
4.2展望 25
参考文献 26
致谢 28