Ta基复合材料的制备与性能研究毕业论文
2021-10-21 17:12:02
摘 要
随着科技工业的飞速发展,电子工程,航空航天工程,武器系统工程等各个领域对材料的性能要求越来越高。钽基复合材料由于具有许多优良的性能,如密度高,耐腐蚀性好,生物相容性好,得到了广泛的关注与发展。钽(Ta)是一种难熔金属,具有一系列优异的性能,例如室温可加工性,在低蒸汽压和高温下具有良好的耐腐蚀性,特殊的电性能和低的汽化率。但由于钽的难熔性和对氧气的高亲和力,很难通过常规制备技术制备完全致密的钽。在目前,纯Ta通常是通过电子束熔化产生的(EBM)和粉末冶金(P/M)技术。为了提高Ta的性能,有必要采用更有效的烧结技术,即等离子体活化烧结(PAS)技术。其与传统烧结技术相比,显著降低了温度和时间,具有巨大的成本潜力。
本实验为提升材料性能降低制造成本,将探究不同TiC添加量对烧结产物及致密化过程的影响,并对烧结产物进行材料性能表征。先将Ta粉与不同比例的TiC粉进行球磨混料得到混合粉,对混合粉进行冷高压成型得到预制块体,然后对预制块体采用PAS烧结。最后对烧结产物进行致密度,XRD,SEM,三点弯曲等测试。实验结果表明TiC在钽基复合材料断面中聚集,减少了材料断面的韧涡,有助于烧结过程中的致密化过程,增强了材料的屈服强度,同时添加过多的TiC会明显降低其韧性。
关键词:等离子活化烧结(PAS);钽合金;TiC;力学性能
Abstract
With the rapid development of the science and technology industry, the performance requirements of materials in various fields such as electronic engineering, aerospace engineering and weapons systems engineering are increasingly high. Tantalum-based composite materials have received widespread attention and development due to their many excellent properties, such as their high density, good corrosion resistance and good biocompatibility.Tantalum (Ta) is a refractory metal with a series of excellent properties, such as processability at room temperature, good corrosion resistance at low vapor pressure and high temperature, special electrical properties and a low vaporization rate. However, due to the refractory properties of tantalum and its high affinity for oxygen, it is difficult to prepare fully dense tantalum by conventional preparation techniques. Currently, pure Ta is generally produced by electron beam fusion (EBM) and powder metallurgy (P / M) technologies. In order to improve the performance of Ta, it is necessary to adopt a more efficient sintering technology, namely plasma activated sintering technology (PAS). Compared to traditional sintering technology, it dramatically reduces temperature and time and has huge cost potential.
In this experiment, in order to improve the performance of the material and reduce the manufacturing cost, we will explore the effect of different TiC additions on the sintered product and the densification process, and characterize the material properties of the sintered product. First, the Ta powder and the TiC powder of different proportions are ball milled to obtain a mixed powder, and the mixed powder is cold pressed to form a preformed block, then the preformed block is sintered with PAS . Finally, the sintered products were tested for density, XRD, SEM and three-point bending. The experimental results show that TiC accumulates in the cross section of the tantalum-based composite material, reducing the toughness vortex of the material cross section, contributing to the densification process during the sintering process, improving the limit of elasticity of the material and adding too much TiC will significantly reduce its toughness.
Key words: Plasma activated sintering (PAS); Tantalum alloy; TiC;
目录
摘 要 III
Abstract IV
第一章 绪论 1
1.1引言 1
1.2钽的理化性质 1
1.3钽的及其合金的应用 2
1.3.1超级合金 2
1.3.2高温应用 2
1.3.3弹道应用 2
1.3.4电容器和电子产品 3
1.3.5 化学加工 3
1.4 碳化钛增强金属基复合材料 4
1.5 放电等离子体烧结技术(SPS)致密化机理 4
1.6 课题研究意义与内容 7
第二章 实验部分 8
2.1主要的实验原材料及表征手段 8
2.1.1实验原材料 8
2.1.2表征手段 8
2.2钽基复合材料烧结产物的制备 9
2.2.1钽与碳化钽混合粉预制块体的制备 9
2.2.2钽基复合材料的烧结 9
第三章 结果与讨论 10
3.1致密度分析 10
3.2 物相分析 10
3.3形貌分析 11
3.4力学性能分析 12
第四章 结语 14
参考文献 15
致 谢 18
附录1 19
附录2 20
第一章 绪论
1.1引言
钽及其合金因为熔点高,蒸汽压低,室温可加工性好,耐腐蚀等优良特性,被广泛应用于医疗、电子器械,航空航天,核能工业等诸多领域[1]。但是由于其硬度较低,熔点较高,且对氧气的亲和性好,当温度升至约680oC时,表面氧化加速将形成致密、稳定的无定形氧化膜阻碍烧结的进行。所以钽在高温环境下应用一般需要先进行表面防护处理。通过适量碳化钛的添加在其表面形成碳化改性层,阻碍氧氮等气体的氧化的作用,提高耐腐蚀性[2]。渗碳改性的原理为碳化钛加入后将生成产物碳化钽,其硬度较高,在表面了形成稳定性良好的界面。
为了制备更加致密化的钽,目前纯钽通常是通过电子束熔化(EBM)和粉末冶金(P/M)技术产生的[3,4]。传统的P / M技术制备出的钽致密度不高,且需要较高的烧结温度和较长的保持时间,这也导致烧结产物晶粒的粗化。因此为了提高Ta的性能,有必要采用更有效的烧结技术。等离子活化烧结(PAS)与传统烧结技术相比,显著降低了烧结所需温度和时间,具有巨大的成本潜力。其能够进行更加快速的烧结的特性显着抑制了晶粒粗化,使材料更加致密化,以此获得具有高密度和均匀微观结构的材料,帮助生产了出具有更高延展性和强度的合金。
1.2钽的理化性质
钽的原子序数为73,属于元素周期表的V B族,并且与铪和钨相邻。钽是一种非常致密的材料(16.6 g /cm3),具有很高的熔点(3100oC)和沸点(5425oC),钽的电子结构(4f145d36s2)包含完整的6s轨道,而在d轨道中只有三个电子。钽的 5氧化态是由于两个6s电子的降级以使5d价轨道半满。但是,在极端温度和真空条件下,可能会发生 2氧化态。