登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 材料类 > 材料科学与工程 > 正文

以镍酸镧为底电极的钛酸铋钠储能薄膜制备与介电性能研究毕业论文

 2021-12-09 17:34:33  

论文总字数:24616字

摘 要

钛酸铋钠(Na0.5Bi0.5TiO3,BNT)是一种钙钛矿型铁电材料,具有较高的最大极化强度及较低的剩余极化强度,储能密度较大。BNT薄膜性能稳定,储能密度较大,电学性能优于一般的材料,具有较为广阔的应用前景。以镍酸镧(LaNiO3,LNO)作底电极来取代传统的金属材料,可有效地降低成本,并与BNT铁电薄膜实现较好的匹配性。本文以BNT薄膜为研究对象,对铁电薄膜电容器进行了一系列的研究,主要内容及结果如下:

1.通过溶胶-凝胶法在Si基片上制备了LNO薄膜。归纳总结出制备LNO底电极的最佳实验条件为:LNO溶液浓度为0.2mol/L,退火时间为240s,退火温度为750℃,LNO薄膜厚度为200nm。LNO薄膜的表面光滑,致密平整,为后续在LNO底电极上生长钛酸铋钠薄膜提供良好的条件。

2.通过溶胶-凝胶法在底电极上制备了钛酸铋钠(BNT)薄膜,归纳总结出制备BNT薄膜的最佳实验条件是:BNT薄膜厚度为200nm,退火时间为3min,最佳的LNO底电极浓度为0.2mol/L。在Pt底电极上生长BNT薄膜所制备的样品电学性能良好,储能密度Wdis=19.2J/cm3,介电常数εr=918,剩余极化强度Pr=15.45μC/cm2,最大极化强度Pmax=43.51μC/cm2,介电损耗为0.2。在LNO底电极上生长的BNT薄膜的储能密度Wdis=10.8J/cm3,介电常数εr=350,剩余极化强度Pr=10.69μC/cm2,最大极化强度Pmax=37.04μC/cm2,介电损耗在0.2左右。

关键字:镍酸镧,钛酸铋钠,溶胶-凝胶,铁电薄膜

Abstract

Bismuth sodium titanate (Na0.5Bi0.5TiO3, BNT) is a perovskite-type ferroelectric material with high maximum polarization intensity and low residual polarization intensity, and high energy storage density.BNT film has stable performance, higher energy storage density, better electrical performance than ordinary materials, and has a relatively broad application prospect.Using LaNiO3 (LNO) as the base electrode instead of the traditional metal material can effectively reduce the cost and achieve better matching with the BNT ferroelectric thin film.In this paper, a series of researches on ferroelectric thin film capacitors are conducted with BNT thin film as the research object. The main contents and results are as follows:

1. LNO films were prepared on Si substrates by sol-gel method.The optimum experimental conditions for preparing LNO base electrode were summarized as follows: LNO solution concentration was 0.2mol/L, annealing time was 240s, annealing temperature was 750℃, and the thickness of LNO film was 200nm.The surface of LNO film is smooth and dense, which provides good conditions for the subsequent growth of bismuth sodium titanate film on the LNO electrode.

2. Bismuth sodium titanate (BNT) film was prepared on the base electrode by sol-gel method, and the optimal experimental conditions for preparing BNT film were summarized as follows: BNT film thickness was 200nm, annealing time was 3min, and the optimal concentration of LNO base electrode was 0.2mol/L.The samples prepared by growing BNT thin films on the base electrode of Pt showed good electrical performance. The energy storage density Wdis=19.2J/cm3, the dielectric constant εr=918, the residual polarization intensity Pr=15.45μC/cm2, the maximum polarization intensity Pmax=43.51μC/cm2, and the dielectric loss was 0.2.The energy storage density of BNT films grown on the LNO base electrode Wdis=10.8J/cm3, dielectric constantεr=350, residual polarization intensity Pr=10.69μC/cm2, maximum polarization intensity Pmax=37.04μC/cm2, dielectric loss around 0.2. 

Key Words:Acid lanthanum nickel,sodium bismuth titanate,sol-gel ,ferroelectric film

目录

第1章 绪论 1

1.1 钛酸铋钠(Na0.5Bi0.5TiO3)铁电薄膜概述 1

1.1.1 铁电材料的基本特征与分类 1

1.1.2 铁电薄膜的发展及研究现状 3

1.1.3 Na0.5Bi0.5TiO3的晶体结构及电学性能 3

1.2 BNT薄膜的制备方法 4

1.3 底电极和铁电薄膜的选择依据 6

1.4 课题研究的目标与内容 6

第2章 LaNiO3薄膜和Na0.5Bi0.5TiO3薄膜的制备 7

2.1 原料及有关仪器设备 7

2.2实验流程 7

2.3 LNO薄膜的制备 8

2.4 BNT薄膜的制备 8

2.5表征手段与测试方法 9

2.5.1 显微结构分析 9

2.5.2 X射线衍射(XRD)测试 9

2.5.3 介电及铁电性能测试 9

第3章LaNiO3(LNO)薄膜的结构与制备工艺 11

3.1 LNO薄膜的结构测试 10

3.2 LNO薄膜制备工艺与电学性能 11

3.2.1 退火温度 12

3.2.2 退火时间 13

3.2.3 厚度 14

3.2.4 前驱体溶液浓度 15

3.3 本章小结 16

第4章 Na0.5Bi0.5TiO3(BNT)薄膜的结构与制备工艺 17

4.1 BNT薄膜的结构测试 17

4.2 BNT薄膜制备工艺与电学性能 17

4.2.1 BNT薄膜的退火时间 17

4.2.2 BNT薄膜的厚度 20

4.2.3 LNO溶液浓度 22

4.3 本章小结 24

第5章 结论 25

5.1 结论 25

5.2 进一步研究与解决的问题 25

参考文献 27

致 谢 29

第1章 绪论

  1. 1钛酸铋钠(Na0.5Bi0.5TiO3)铁电薄膜概述

1.1.1铁电材料的基本特征与分类

铁电体是指具有自发极化,并且在外电场作用下,自发极化的取向能够发生改变的晶体[2]。铁电材料的相关性质可用以下概念描述。

(1)电滞回线

在外加电场作用下,铁电体的极化与外加电场会呈现出类似铁磁材料磁滞回线的关系,当电场在正负饱和值之间循环一周时,极化和电场的关系曲线称为电滞回线,如图1-1所示。

电滞回线的主要特征参数为剩余极化强度(Pr),矫顽场(Ec[7]。当外加电场比较小时,铁电单体的极化线性地依赖外加电场。随着外加电场的持续增加,晶体的总极化强度呈线性增加。如果电场强度在材料的极化趋于饱和后减小,那么材料的极化强度也会变小。若电场强度减小到零时,材料的极化强度减小到某一数值Pr,而非减小到零。若电场变为反向,则材料的极化也随之改变方向,并且材料的极化也减小,直到电场强度达到某一值时,材料的极化再趋于饱和。

图1-1铁电材料的极化特征曲线

(2)居里温度

一般来说,铁电体的铁电性只存在于一定的温度范围之内,而当温度超过一个确定的值后,铁电体的自发极化会消失,铁电体就会转变为顺电体[7]。这时的温度就是居里温度。研究表明铁电体的一些特性在居里温度附近会出现反常现象。

(3)储能密度Pmax

请支付后下载全文,论文总字数:24616字

相关图片展示:

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图