镁镍基合金的可控制备及其储氢性能研究毕业论文
2022-01-05 21:24:47
论文总字数:23804字
摘 要
目前,化石燃料的的大量使用所带来的资源枯竭和和环境污染,引起了人们的广泛关注。要想解决这一问题,需要寻找一种环境友好型的可持续清洁能源来代替传统燃料。氢能由于其来源广、储量大、可作为能源媒介而成为理想的选择。实际使用氢能时,其储存过程尤为复杂重要。通常使用固态储氢材料进行储氢,储氢材料需要具有使用价值低、储氢能力强、生成物无污染等特点,镁基储氢材料具有上述条件,所以受到研究者的亲睐。但是,镁基材料在实际应用过程中存在一些问题,如由于镁氢键作用力强导致的热力学过于稳定,在吸放氢反应时动力学性能差。本课题采用合金化的改性方法,制备特定形貌的镁镍基氢化物,研究镍元素的加入对镁基材料储氢性能的影响。
本实验通过液相还原法制备具有特殊形貌的一维纳米金属镍,通过改变NiCl2乙二醇溶液的浓度,制备不同尺寸的镍前驱体。对所制得的镍进行X射线衍射(XRD)和场发射电子显微测试(FESEM)等测试,根据图谱和图像对产物进行物相组成分析和微观结构表征。之后利用氢化化学气相沉积法(HCVD)以镍为基底合成镁镍基氢化物,通过对合金化和氢化阶段的温度、氢压、保温时间等工艺参数优化,制备出纯度良好的镁镍基氢化物。采用差示扫描量热法(DSC)和压力-组分-温度分析方法(PCT)测量制得产物的吸放氢反应的起始温度、峰值温度和储氢性能等。本实验表明:使用浓度不同的NiCl2乙二醇溶液进行液相还原反应,可生成尺寸不同的镍纳米线;且纳米线直径数值大小与NiCl2乙二醇溶液浓度成反比。以镍纳米线为前驱体利用HCVD制得的镁镍基氢化物,在沉积产物的FESEM图像中可以看到其一维结构到了一定程度的保持。根据不同升温速率对应的脱氢反应的峰值温度,将其基于Kissinger方程进行线性拟合,由曲线的斜率进一步计算可知复合物脱氢反应时对应的表观活化能为69.2 kJ/mol。另外,复合物的吸放氢反应是可逆的。
关键词:镁基储氢材料 合金化 液相还原法 氢化化学气相沉积法
Abstract
At present, The massive use of fossil fuels may bring about many problems, such as resource depletion and environmental pollution, which have aroused people’s broad concern. In order to solve this problem, instead of using traditional dyes, we are looking for an environmentally friendly, sustainable, clean energy source. Hydrogen energy is an ideal choice due to its extensive sources, large reserves and as an energy medium. When hydrogen energy is actually used, its storage process is particularly complex and important. Solid hydrogen storage materials are commonly used for hydrogen storage. Hydrogen storage materials should have the advantages of low cost, high hydrogen storage capacity and no pollution. Magnesium based hydrogen storage alloy has the above conditions, so they are favoured by researchers. However, there are some problems in the practical application of magnesium-based materials. For example, due to the strong hydrogen bond force of magnesium, the thermodynamics is too stable, and the kinetic performance is poor in the reaction of hydrogen absorption and emission. In the paper, Mg-Ni-based hydride with special morphology was prepared by alloying modification method to explore the effect of the addition of nickel on the hydrogen storage performance of magnesium-based materials.
Nickel metal was prepared by liquid phase reducing method. Nickel precursors with different morphologies were prepared by using NiCl2 glycol solution of the reactant of different concentrations. The phase composition and microstructure of the product can be analyzed by XRD and FESEM. Mg-Ni-based hydride was synthesized from nickel substrate by HCVD. Through optimization of the alloying and hydrogenation temperature, hydrogen pressure, holding time and other parameters, we aim to prepare Mg-Ni-based hydride with high purity. The starting temperature and peak temperature of the hydrogen absorption/desorption reaction and hydrogen storage property was measured by DSC and PCT. Results show: Nickel nanowires of different sizes can be generated by using the reactant of NiCl2 glycol solution with different concentration. Moreover, the lower the concentration, the larger the size of the resulting nanowires. In the FESEM image of the deposited product, the Mg-Ni-based hydride prepared by HCVD with nickel nanowires as the precursor can be seen to maintain its one-dimensional structure to a certain extent. The peak temperature of dehydrogenation reaction corresponding to different heating rates were fitted linearly based on the Kissinger equation. The apparent activation energy corresponding to the dehydrogenation reaction of the compound was calculated to be 69.2 kJ/mol. Furthermore, the hydrogen absorption and desorption reaction of the complex is reversible.
Key words: Magnesium based hydrogen storage material; Alloying; Liquid phase reducing method; HCVD
目 录
摘 要 I
Abstract II
目 录 IV
第一章 绪论 1
1.1 引言 1
1.2 存储方式 2
1.3 镁基储氢材料概述 3
1.3.1 催化 4
1.3.2 合金化 5
1.3.3 纳米化 6
1.3.4 多相复合 6
1.4 本课题的研究内容和意义 6
第二章 实验方法 8
2.1 实验原料与试剂 8
2.2 实验合成设备 8
2.2.1 氢化化学气相沉积合成设备 9
2.3 实验制备工艺 10
2.4 样品的微观分析和表征 10
2.4.1 XRD分析 10
2.4.2 FESEM分析 10
2.4.3 TEM分析 11
2.5 性能表征与分析 11
2.5.1 P-C-T分析 11
2.5.2 DSC分析 13
第三章 一维纳米镁镍基合金储氢性能 14
3.1 一维纳米镁镍基合金物相和微观形貌表征 14
3.2 一维纳米镁镍基合金储氢性能测试 18
第四章 总结与展望 21
4.1 总结 21
4.2 展望 21
参考文献 23
致谢 25
第一章 绪论
1.1 引言
在人类社会发展历史长河中,人类从最初使用柴草能源,发展至使用煤炭、石油、天然气等能源,如今更多倾向于使用新能源。能源是人类是日常生活中必不可少的一部分。目前,能源主要包括以煤炭、石油、天然气为主的化石燃料和以风能、水能、太阳能为主的可再生能源。随着世界人口的不断增加和工业革命以来资源的大规模使用,使得社会对化石燃料的需求急剧增加。但全球化石燃料储量有限,且属于不可再生能源,另外使用过程中产生的温室气体也会造成全球变暖等环境问题。所以在化石燃料资源枯竭和环境污染的背景下,亟需开发出一种可持续性的清洁能源来代替现有的化石燃料。
可持续的清洁能源虽具有来源丰富、获取简单、环境友好等优点,但使用时也需要克服一定的障碍。目前存在的可再生能源具有局限性和不稳定性,需要使用合适的二次能源作为载体,才能实现能源的充分利用。合适的二次能源可以担当一次能源和应用装置的纽带,从而使清洁能源能够稳定的储存和运输。图1-1为理想的清洁能源利用系统,该图介绍了从一次能源的产生到终端应用所经历的具体过程。氢能因其来源丰富、易于实现氢电、氢热转换、能量密度高(标况下燃烧1 g氢气产生的热量约为燃烧相同质量石油的三倍)、产物无污染等优点[1]在众多二次能源中脱颖而出,备受研究者关注。
请支付后下载全文,论文总字数:23804字