微反应器法辅助合成磷酸铁锰锂正极材料及其电化学性能的研究毕业论文
2022-04-07 20:56:52
论文总字数:20983字
摘 要
在国家不断发展,逐渐走向繁荣昌盛的路上,科学是第一生产力,科技的发展是生产生活发展基础。目前对属于锂电池类的磷酸铁锰锂电池的应用研究已成为了锂电池研究新热点。但由于磷酸铁锰锂材料的发展新兴性,磷酸铁锰锂的研发研究以及对于磷酸铁锰锂的电化学性能的研究探索还需要进一步尝试。磷酸铁锰锂正极材料以磷酸源化合物、铁源化合物、锰源化合物、锂源化合物以及高分子聚合物等为合成原料,将容易被电解液侵蚀的锰源化合物分散于Mn溶液,通过微反应器法进行合成。本文针对磷酸铁锰锂的原有研究情况,使用微反应器法进行合成研究,通过金属锰离子地添加,制备方式步骤的进一步探讨等,进行六组核心实验,对磷酸铁锰锂材料的微反应器法合成和其电化学性能进一步研究。
目前作为锂离子正极材料主要包括 LiCoO2 、LiNiO2、LiMn2O4、LiFePO4作为锂离子电池正极材料得到广泛地研究。其中由 1997 年 goodenough 课题组提出的 LiFePO4 以价格低廉,产量丰富,循环稳定性好等优势,目前已被认为是极具有研究、发展前景的锂离子电池正极材料之一。介于其使用电压仅为3.2V,并且其倍率性能不足,电导率较低等原因,难以满足高能量动力电池的电压要求,因此而在一定程度上限制了LiFePO4电池的进一步发展。提高比能量的方法有两种:寻找比容量较高的正极材料;提高材料的工作电压。LiMnPO4 相对于 LiFePO4 而言循环稳定性较弱,但是具有使用电压较高(为 3.8 V),自放电率低,材料成熟,成本低的特点。根据动力电池要求特性可将Fe 和 Mn 两者相结合,兼具两者的优势,采用 Mn 掺杂的 LiFe-PO4 做为锂离子正极材料—磷酸锰铁锂(LiMnxFe1-xPO4),在这种材料中,Mn3 /Mn2 4.0 V 左右工作电压位于两者之间,能够实现 Li 嵌入和脱出,更具有前景的是市场上通用电解液能够在 4.0 V 电压范围内保持稳定不分解,也不会因为电压过低而降低比能量。因此 LiMnxFe1-xPO4 正极材料成为了人们新的研究热点。
关键词:磷酸铁锰锂材料 锂离子电池 微反应器法 正极材料
Synthesis of Iron and Manganese phosphate lithium battery cathode materials and electrochemical properties of the micro-reactor Assisted
Abstract
Countries in the development, the road leading to the prosperity gradually, science is the first productive force, the development of science and technology is the development of the production and living. And now, with high density, low cost, efficient, environmental protection, energy alternatives to traditional lead-acid battery of lithium battery materials become one of the science and technology of science and technology continuously explore.Lithium battery application of manganese lithium iron phosphate batteries currently become the lithium battery research to be bestowed favor on newly. But due to the development of the manganese lithium iron phosphate material emerging, manganese lithium iron phosphate development research as well as for the electrochemical properties of the manganese lithium iron phosphate exploration need further research.Manganese lithium iron phosphate anode materials to source compounds, iron source, source of manganese phosphate compound, source of lithium compounds and polymers as raw materials, will be easy to electrolyte erosion source of manganese compound dispersed in Mn solution, by means of micro reactor for synthesis.This article in view of the existing research situation of manganese lithium iron phosphate, USES the method of micro reactor for synthesis, through to add manganese metal ions way of preparation steps further discussion and so on, six core experiments, the microreactor of manganese lithium iron phosphate material synthesis and its electrochemical performance further research.
Currently lithium ion cathode materials include LiCoO2 , LiNiO2 ,
LiMn2O4 , LiFePO4 has been widely studied as a cathode material for lithium ion batteries. Wherein LiFePO4 1997 goodenough group proposed to cheap, abundant yield, good cycle stability and other reasons is considered to be one of the lithium ion battery cathode materials development prospects. The use of voltage is only 3.2 V, insufficient rate performance, low electrical conductivity, can not meet the requirements of high-energy battery, limiting its further development. Improve the specific energy of two methods: Looking for a high specific capacity cathode material; improve the material working voltage. LiMnPO4 LiFePO4 relative stability in terms of circulation is weak, but with the use of high voltage (to 3.8 V), low self-discharge, the material is mature, low cost. The power requirements of battery characteristics may be a combination of both Fe and Mn, combines the advantages of both, using Mn-doped LiFe-PO4 as a cathode material for lithium ion - lithium manganese iron phosphate (LiMnxFe1-xPO4), in which material, Mn3 / Mn2 4.0 V operating voltage is located between the left and right, it is possible to embed and Li prolapse, promising more common on the market will remain stable in the electrolyte within 4.0 V voltage range does not decompose, it will not low voltage and reduce specific energy. Therefore LiMnxFe1-xPO4 cathode materials become the people new hotspot.
Key words:Manganese lithium iron phosphate;Lithium ion batteries;Micro reactor method; The electrochemical properties; The performance test
目 录
摘 要 I
Abstract II
第一章 文献综述 1
1.1 引言 1
1.2 对磷酸铁锰锂电池正极材料当前发展简述 2
1.2.1 磷酸铁锰锂电池正极材料简述及其发展过程 2
1.2.2磷酸铁锰锂电池正极材料基本原理与结构 3
1.3 磷酸铁锰锂电池正极材料的研究现状 4
1.3.1 磷酸铁锰锂电池正极材料的研究背景 4
1.3.2磷酸铁锰锂电池正极材料的研究状态 4
1.3.3磷酸铁锰锂电池正极材料与其他类型锂电池的同向比较 5
1.4微反应器法辅助合成磷酸铁锰锂电池正极材料主要内容 6
1.4.1微反应器法辅助合成磷酸铁锰锂电池正极材料原理 6
1.4.2掌握微反应器法合成磷酸铁锰锂电池正极材料的测量方法 6
1.5磷酸铁锰锂电池正极材料的研究意义 7
1.5.1改变新能源市场,节省正极材料成本 7
1.5.2核心电池技术突破,提升能量密度值 7
1.5.3方便电池管理,提高电池使用循环性 7
第二章 微反应器法合成磷酸铁锰锂电池正极材料实验 9
2.1实验药品及仪器设备 9
2.1.1实验药品及试剂 9
2.1.2实验仪器及设备 9
2.2实验思路 10
2.3实际研究过程 11
2.3.1前驱体的制备 11
2.4球磨过程 15
2.5装备电池 15
2.5.1烧料 15
2.5.2涂片 16
2.5.3装备电池(在抽成真空的手套箱中操作) 16
2.5.4测试流程 16
第三章 实验电池样品分析 17
3.1 XRD分析 17
3.2电池的首次充放电曲线分析 19
3.3电池的循环性能和库伦效率图的分析 20
第四章 结论与展望 21
4.1结论与探讨 21
4.1.1实验结论 21
请支付后下载全文,论文总字数:20983字