微反应器辅助合成磷酸锰锂正极材料毕业论文
2022-07-06 20:11:44
论文总字数:29639字
摘 要
随着能源危机的日益严重,新能源的开发已成为人类可持续发展的关键。科技的发展,以及社会的进步对电池的性能有了更高的要求。锂离子电池因其具有高比容量、高比能量、高电压、安全性好的优点,已经成为电池研究的热点和发展的趋势。
聚阴离子型正极材料LiMPO4(M=Fe、Mn、Ni、Co)可极大改善锂离子电池体系的安全性能。不仅如此,这类材料还具有资源丰富、循环寿命长、环境友好等优点,是动力型锂离子电池正极材料的理想选择[1]。随着Padhi等人[2]最初在LiFePO4正极的聚阴离子增加的Fe2 /3 的氧化还原电对的诱导效应的工作,橄榄石结构的锂离子电池正极材料已经成为近年来研究的热点。同样为橄榄石结构的磷酸锰锂LiMnPO4[3]具有与LiFePO4相同的理论容量( 170 mAh/g),而输出电压能达到4.1V,空气中Mn2 稳定,能量密度适中,锰盐价格低廉,资源也非常丰富,因此有很高的研究及应用价值。
本论文采用微反应器辅助合成来制备LiMnPO4,即先选用T型微通道反应器合成Mn3(PO4)2·3H2O纳米颗粒,继而通过固相法烧结形成纳米LiMnPO4/C正极材料。选择葡萄糖为有机碳源在颗粒表面进行包覆,避免正极材料在高温热处理中的颗粒长大,有利于形成纳米产物。同时,形成的碳层将增加材料的导电性,从而得到电化学性能优异的产物。
利用TG/DSC、XRD、TEM、FSEM和Raman等技术对产物的微观结构和形貌等进行分析,并采用恒流充放电、交流阻抗测试等技术测试其电化学性能。
本论文提出利用微反应器结合固相法烧结合成纳米LiMnPO4/C正极材料,讨论了微通道反应器中流体的参数、烧结条件等对产物的影响。研究发现,当LiH2PO4溶液的pH值为6.21,T型微反应器内溶液流量调至50 ml/min时Mn3(PO4)2·3H2O纳米颗粒纯度最高。在650℃烧结10h的样品颗粒呈现出纳米薄片的形貌特征,尺寸最小,粒径分布较窄。所得样品的电荷转移电阻Rct值最小,这意味着该样品具有最好的电荷转移动力学性能,因而容易得到较好的容量。在0.05C下最高放电比容量为137mAh/g。
关键词: 微反应器 锂离子电池 LiMnPO4 纳米
ABSTRACT
With the increasingly serious energy crisis , the development of new energy has become the key to sustainable human development . The development of science and technology, and the performance of social progress on batteries have higher requirements.Li-ion battery because of its advantages of high capacity, high specific energy, high voltage, good safety, has become a hot research and development trend of battery.
Poly anion cathode materials LiMPO4 (M=Fe, Mn, Ni, Co) can greatly improve the safety performance of lithium-ion battery system.Not only that, this kind of material has the characteristics of long cycle life, rich in resources, environment friendly, ideal for cathode materials for power Li-ion battery[1].Following the initial work by Padhi et al.[2] on the inductive effects of polyanions in a phospho-olivine LiFePO4 cathode with an increased Fe2 /3 redox couple potential, olivine structures have become the focus of Li-ion battery cathodes in recent years.The same as the olivine LiMnPO4 [3] has the theoretical capacity as same as LiFePO4 (170 mAh/g), while the output voltage can reach 4.1V, stable Mn2 in air, the energy density is moderate, Mn salt low price, resources are abundant, has the very high value of study and application.
This thesis uses microreactor assisted synthesis to prepare LiMnPO4, namely the first selection T-microreactor compound Mn3(PO4)2·3H2O nano particles, followed by solid phase sintering compound LiMnPO4/C cathode material.The use of TG / DSC, XRD, TEM, FSEM and Raman techniques for product microstructure and morphology were analyzed using the constant current charge and discharge, AC impedance techniques to test its electrochemical properties.
This thesis proposes the use of microreactor combined with solid phase sintering synthesis of nano LiMnPO4/C cathode materials, the effects of microreactor fluid parameters, sintering conditions on the product.The study found that, when LiH2PO4 solution pH value of 6.21,T-microreactor solution flow rate to 50 ml/min, Mn3(PO4)2·3H2O nano particles with high purity.Sintered at 650 ℃ for 10h, samples showing nano sheets, smallest, narrow particle size distribution.The value of the sample charge transfer resistance Rct is minimum, which means that the sample has the best dynamic performance of charge transfer, so easy to get good capacity.In 0.05C maximum discharge capacity of 137mAh/g.
Key Words: Li-ion battery; LiMnPO4; Microreactor; Nanometer
目 录
摘 要 I
ABSTRACT II
第一章 文献综述 1
1.1引言 1
1.2锂离子电池简述 1
1.2.1 锂离子电池的发展 1
1.2.2锂离子电池的结构与工作原理 2
1.2.3 锂离子电池的特点 4
1.3锂离子电池正极材料 4
1.3.1 层状结构正极材料LiMO2 4
1.3.2 尖晶石结构正极材料LixM2O4 5
1.3.3 橄榄石结构正极材料LiMPO4 5
1.4 LiMnPO4材料 6
1.4.1 固相法 6
1.4.2 多元醇法 7
1.4.3 溶胶-凝胶法 7
1.4.4水热/溶剂热合成法 8
1.4.5离子交换法 9
1.5微反应器简述 9
1.5.1微反应器 9
1.5.2 微反应器中制备纳米材料 9
第二章 实验方法 11
2.1 引言 11
2.2 实验方案 11
2.2.1 Mn3(PO4)2·3H2O制备 11
2.2.2 LiMnPO4/C制备 12
2.3 实验原料及设备 13
2.3.1 实验原料 13
2.3.2 实验仪器设备 14
2.4 材料表征 14
2.4.1 物相分析 15
2.4.2 形貌分析 15
2.4.3 TG-DSC分析 16
2.4.4 元素组成测试 16
2.4.5 碳含量分析 16
2.5 材料的电化学性能分析 17
2.5.1 电极的制备及扣式电池的组装 17
2.5.2 恒流充放电性能测试 18
第三章 微反应器制备纳米Mn3(PO4)2·3H2O颗粒 19
3.1 溶液pH对Mn3(PO4)2·3H2O的影响 19
3.2流量对Mn3(PO4)2·3H2O的影响 20
请支付后下载全文,论文总字数:29639字