登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

高温电解CO2中Nb掺杂La0.6Sr0.4FeO3-δ燃料极材料研究任务书

 2020-04-18 19:40:14  

1. 毕业设计(论文)的内容和要求

1、内容: 固体氧化物电解池(solid oxide electrolysis cell,soec)是一种能在中高温下将热能和电能高效环保地直接转化为燃料中化学能的全固态化学电解装置。

soec可在高温和中温下直接将co2电解成co,在当前能源和环境问题日益凸显的社会背景下,soec技术必将具有广阔的应用前景。

电解池通常由燃料极,电解质和空气极组成,燃料极通常是最关键的一环。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Zhu D D, Liu J L, Qiao S Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide [J]. Advanced Materials, 2016, 28:3423. [2] Berger E, Hahn M W, Przybilla T, et al. Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2, capture [J]. Journal of Energy Chemistry, 2016, 25(2):327. [3] Su X, Xu J, Liang B, et al. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. Journal of Energy Chemistry, 2016, 25(4):553-565. [4] Graves C, Ebbesen S D, Mogensen M. Co-electrolysis of CO2, and H2O in solid oxide cells: Performance and durability[J]. Solid State Ionics, 2011, 192(1):398-403. [5] Bierschenk D M, Wilson J R, Barnett S A. High efficiency electrical energy storage using a methane#8211;oxygen solid oxide cell[J]. Energy Environmental Science, 2011, 4(3):944-951. [6] S. H. Jensen, C. Graves, M. Mogensen, et al. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4[J]. Energy Environmental Science, 2015, 8(8):2471-2479. [7] Meng, N., M.K.H. Leung, and D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy, 2008. 33(9): p. 2337-2354. [8] Ebbesen S D, Sun X, Mogensen M B. Understanding the processes governing performance and durability of solid oxide electrolysis cells.[J]. Faraday Discussions, 2015, 182:393-422. [9] Jevgenija Manerova, Denis J Cumming, Derek C Sinclair, et al. In-Situ Raman Spectroscopy Probing of Solid Oxide Electrolysis Cells[J]. Meeting Abstracts, 2014. [10] Traulsen M L, Mcintyre M D, Norrman K, et al. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes#8212;Polarization Effects[J]. Advanced Materials Interfaces, 2016, 3(24):1600750. [11] Cheng C Y, Kelsall G H, Kleiminger L. Reduction of CO2 to CO at Cu#8211;ceria-gadolinia (CGO) cathode in solid oxide electrolyser[J]. Journal of Applied Electrochemistry, 2013, 43(11):1131-1144. [12] Cao Z, Zhang Y, Miao J, et al. Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(46):16572-16577. [13] Yoon S E, Song S H, Choi J, et al. Coelectrolysis of steam and CO2 in a solid oxide electrolysis cell with ceramic composite electrodes[J]. International Journal of Hydrogen Energy, 2014, 39(11):5497-5504. [14] Santos-Pentilde;a J, Cruz-Yusta M, Soudan P, et al. Carbon and transition metal containing titanium phosphates as electrodes for lithium ion batteries[J]. Solid State Ionics, 2006, 177(26):2667-2674. [15] Raza M A, Rahman I Z, Beloshapkin S. Synthesis of nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3#8722;δ, (LSCM) perovskite by solution combustion method for solid oxide fuel cell application[J]. Journal of Alloys Compounds, 2009, 485(1):593-597. [16] Yue X, Irvine J T S. (La,Sr)(Cr,Mn)O3 /GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis[J]. Solid State Ionics, 2012, 225(14):131-135. [17] Xing R, Wang Y, Liu S, et al. Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3#8722;δ -yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation[J]. Journal of Power Sources, 2012, 208(208):276-281. [18] Shisong Li, Yuanxin Li, Yun Gan,. Electrolysis of H2O and CO2, in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3 δ, composite cathode[J]. Journal of Power Sources, 2012, 218:244-249. [19] Gan L, Ye L, Tao S, et al. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.[J]. Physical Chemistry Chemical Physics, 2016, 18(4):3137-3143. [20] Ye L, Zhang M, Huang P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, 8:14785.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2月25日 ~3月3日 确定课题,布置任务,阅读文献资料,并进一步检索文献。

3月4日 ~3月17日 翻译英文文献,完成开题报告;制订实验计划,了解实验仪器设备及实验方法。

3月18日 ~ 3月24日 修改开题报告及英文文献翻译,进行开题,根据意见完善实验计划。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图