聚苯胺-碳载Pt-Co燃料电池催化剂的制备与表征任务书
2020-04-30 16:12:18
1. 毕业设计(论文)的内容和要求
质子交换膜燃料电池(pemfc)是一种新型能源系统,具有高的能量转换效率,无污染等特点。
但是目前pemfc商业化面临的主要问题是催化剂的成本与耐久性问题,提高耐久性是现阶段质子交换膜燃料电池研究的重点。
目前催化剂的耐久性主要通过催化剂本身与其载体两方面来进行改善,选用导电性以及耐久性较好的导电聚合物可以有效的提高催化剂的使用寿命,使用合金化催化剂一方面可以减少pt的使用量,此外,颗粒尺寸较小的合金催化剂具有更高的催化性能。
2. 参考文献
[1] Kumar, Rajesh P. , et al. "Ultrasound-Assisted Synthesis of Pt-Co/C Bimetallic Alloys for Oxygen Reduction in PEM Fuel Cells." Sustainable Energy Fuels (2018). [2] Lv, H. , et al. "Carbon‐supported Pt‐Co Nanowires as a Novel Cathode Catalyst for Proton Exchange Membrane Fuel Cells." Fuel Cells 17.5(2017). [3] Liu, Yang , et al. "Pt-Co deposited on polyaniline-modified carbon for the electro- reduction of oxygen: The interaction between Pt-Co nanoparticle and polyaniline." New Journal of Chemistry 41.14(2017). [4] Duanghathai, Kaewsai , and H. Mali . "Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell." Nanomaterials 8.5(2018). [5] Han, Jie, et al. "Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application." Progress in Polymer Science (2017). [6] Ferreira-Aparicio, Paloma , et al. "Degradation Study by Start-Up/Shut-Down Cycling of Superhydrophobic Electrosprayed Catalyst Layers Using a Localized Reference Electrode Technique." ACS Applied Materials Interfaces 9.12(2017) [7] Li, Bingzhen, et al. "Synthesis of Fe3O4 /polypyrrole/polyaniline nanocomposites by in-situ method and their electromagnetic absorbing properties." Journal of Saudi Chemical Society 21.4(2016). [8] Lemos, Hugo G., S. F. Santos, and E. C. Venancio. "Polyaniline-Pt and polypyrrole-Pt nanocomposites: Effect of supporting type and morphology on the nanoparticles size and distribution." Synthetic Metals 203(2015):22-30. [9] Xian X J,Jiao L Y,Xue T, et al. Nanovenee rs: An Electroche mical Approach to Synthesizing Condu ctive Layered Nanostructures[J]. Nano Lett, 2011,5 ( 5) : 4000-4006. [10] Bhattacharjya D, Mukhopadhyay I. Controlled growth of polyaniline fractals on HOPG through potentiodynamic electropolymerization[J]. Langmuir, 2012, 28: 5893-5899 [11] Qiufeng L. Unstirred preparation of soluble electroconductive polypyrrole nanoparticles[J]. Microchim Acta, 2010( 168) : 205-213. [12] Watanabe M, Tryk D A, Wakisaka M, et al. Overview of recent developments in oxygen reduction electrocatalysis[J]. Electrochimica Acta, 2012, 84: 187-201. [13] Li B H, Chan S H. PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3338-3345. [14] 侯俊波,俞红梅, 邵志刚等. 质子交换膜燃料电池的0℃以下耐受性[J]. 电池, 2006, 37(06): 411-414. [15] 孙树成, 俞红梅, 侯俊波等. PEMFC在0℃以下环境启动的研究[J]. 电源技术, 2007, 31(08): 626-630. [16] Sumita M , Sakata K, A sai S , et al. Dispersio n o f fillers and the electrical conductivity of polymer blends filled with carbon black[J] . P olymer Bulletin , 1991 , 25: 265-271. [17] Sumita M, Sakata K, Hay akawa Y, et al. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends[J]. Colloid and Polymer Science, 1992,270 : 134-139. [18] Authayanun S, Im-Orb K, Arpornwichanop A. A review of the development of high temperature proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2015, 36(4): 473-483. [19] Cheng W, Shubo W, Jianbo Z, et al. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application[J]. PROGRESS IN CHEMISTRY, 2015, 27(4): 424-435. [20] Shih N C, Weng B J, Lee J Y, et al. Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles[J]. International Journal of Hydrogen Energy, 2014, 39(6):1-8. [21] 王磊磊. 质子交换膜燃料电池膜电极稳定性研究[D]. 大连理工大学, 2007. [22] Cheng W, Shubo W, Jianbo Z, et al. The Key Materials and Components for Proton Exchange Membrane Fuel Cell[J]. PROGRESS IN CHEMISTRY, 2015, 27(2-3): 310-320. [23] 李俊, 张震. 质子交换膜燃料电池用催化剂及其稳定性改进方法研究进展[J]. 材料导报, 2011, 25(2): 48-51. [24] Chalk Steven G, Miller James E. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems[J]. Journal of Power Sources, 159(1): 73-80. [25] Malek K, FrancoA A. Microstructure-Based Modeling of Aging Mechanisms in Catalyst Layers of Polymer Electrolyte Fuel Cells[J]. The Journal of Physical Chemistry B, 2011, 115(13): 8088-8101. [26] Nepel T C M, Lopes P P, Paganin V A, et al. CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: A mass spectrometry investigation[J]. Electrochimica Acta, 2013, 8(1): 217-224. 学生在此基础上自行查阅相关文献至少10篇。
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.18-2019.1.5 了解课题背景,查阅相关文献 2019.1.6-2019.1.10 文献综述,翻译英文文献 2019.1.11-2019.1.15 完成开题,确定实验方案 2019.2.23-2019.3.1 实验准备 2019.3.2-2019.3.20 聚苯胺膜以及Pt-Co的制备 2019.3.21-2019.4.15 电化学性能测试、XRD、SEM等测试 2019.4.16-2019.5.6 数据分析、中期检查 2019.5.7-2019.5.15 SEM测试分析 2019.5.16-2019.6.7 撰写毕业论文、修改论文 2019.6.8-2019.6.17 论文答辩