甘氨酸加入量对GBCO-SDC复合阴极性能的影响任务书
2020-05-01 08:41:40
1. 毕业设计(论文)的内容和要求
本论文以固体氧化物燃料电池为研究背景,主要针对gbco-sdc复合阴极的电化学性能进行改善,提高阴极材料在中温范围内(600-800℃)的适用性。
本论文的研究课题名称为”甘氨酸加入量对gbco-sdc复合阴极性能的影响”。
甘氨酸的加入量对gbco粉体的成相温度、晶粒尺寸等有很大的影响,进一步影响到gbco-sdc浸渍阴极的氧表面交换系数、三相线的数量、浸渍相的尺寸和形貌。
2. 参考文献
[1] Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1-8. [2] Taroco H A, Santos J A F, Domingues R Z, et al. Ceramic materials for solid oxide fuel cells[M]//Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications. InTech, 2011. [3] Ni Q, Chen H, Ge L, et al. Investigation of La1#8722;xSmx#8722;ySryCoO3#8722;δ cathode for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2017, 349: 130-137. [4] Xu H, Zhang H, Chu A. An investigation of oxygen reduction mechanism in nano-sized LSCF-SDC composite cathodes[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22415-22421. [5] Fan L, Zhu B, Su P C, et al. Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities[J]. Nano Energy, 2018, 45: 148-176. [6] Kim, J. H., Manthiram, A. (2015). Layered LnBaCo2O5 δ perovskite cathodes for solid oxide fuel cells: an overview and perspective. Journal of Materials Chemistry A, 3(48), 24195-24210. [7] Badwal S P S, Giddey S, Munnings C, et al. Review of progress in high temperature solid oxide fuel cells[J]. ChemInform, 2015, 46(31): 23-37. [8] Shao Zong-ping, Zhou Wei, Zhu Zhong-hua. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells[J]. Progress in Materials Science, 2012, 57(4): 804-874. [9] Sharifzadeh M, Meghdari M, Rashtchian D. Multi-objective design and operation of solid oxide fuel cell (SOFC) triple combined-cycle power generation systems: Integrating energy efficiency and operational safety[J]. Applied Energy, 2017, 185: 345-361. [10] Hildenbrand Nicolas, Nammensma Pieter, Blank Dave H A, et al. Influence of configuration and microstructure on performance of La2NiO4 δ intermediate-temperature solid oxide fuel cells cathodes[J]. Journal of Power Sources, 2013, 238: 442-453. [11] Eveloy V, Karunkeyoon W, Rodgers P, et al. Energy, exergy and economic analysis of an integrated solid oxide fuel cell#8211;gas turbine#8211;organic Rankine power generation system[J]. International Journal of Hydrogen Energy, 2016, 41(31): 13843-13858. [12] A P Khandale, S S Bhogal. Effect of Sr doping on structural, electrical and electrochemical properties of Nd2CuO4 for IT-SOFC application[J]. Solid State Ionics, 2014, 262(10): 416-420. [13] Jin Fangjun, Shen Yu, Wang Rui, et al. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 δ as cathode material for intermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources, 2013, 234: 244-251. [14] West Matthew, Manthiram Arumugam. Layered LnBa1#8722;xSrxCoCuO5 δ (Ln = Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3364-3372. [15] Seonhye Park, Sihyuk Choi, Jeeyoung Shin, et al. Electrochemical investigation of strontium doping effect on high performance Pr1#8722;xSrxCoO3#8722;δ (x=0.1, 0.3, 0.5, and 0.7) cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2012, 210: 172-177. 学生在此基础上自行查阅相关文献至少10篇。
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.22-2019.1.5 了解课题背景,查阅相关文献 2019.1.6-2019.1.10 文献综述,翻译英文文献 2019.1.11-2019.1.24 完成开题,确定实验方案 2019.3.18-2019.3.20 实验准备 2019.3.21-2019.3.29 GdBaCo2O5 δ和Ce0.8Sm0.2O1.9粉体的制备 2019.3.30-2019.4.10 考察GdBaCo2O5 δ和Ce0.8Sm0.2O1.9粉体的化学相容性 2019.4.11-2019.4.20 不同甘氨酸加入量的GdBaCo2O5 δ浸渍液的制备 2019.4.21-2019.4.30 丝网印刷制备SDC阴极骨架 2019.5.1-2019.5.14 制备GBCO-SDC浸渍阴极 五一 2019.5.15-2019.5.22 浸渍阴极的极化电阻测试 2019.5.23-2019.5.28 实验数据分析 2019.5.29-2019.6.7 撰写毕业论文 2019.6.8-2019.6.14 论文答辩