登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

Ce、La掺入对Ni/NaCl蒸汽重整甲醛制氢的影响任务书

 2020-05-01 08:42:14  

1. 毕业设计(论文)的内容和要求

1、毕业论文内容 本课题重点研究ce、la掺入对ni/nacl蒸汽重整甲醛制氢的影响。

2、毕业要求 ①学生应高度重视毕业设计(论文)工作,严格要求自己,自觉遵守学习纪律和各项规章制度。

②毕业设计(论文)期间,实行考勤制度,一般不准请假,确因特殊情况需要请假时,须按照学校有关规定执行。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

1. Chen X , Shen S , Guo L , et al. Semiconductor-based Photocatalytic Hydrogen Generation[J]. Chemical Reviews, 2010, 110(11), 6503-6570. 2. Gomes Silva C, Luz I, Llabr#233;s i Xamena F X, et al. Water stable Zr#8211;benzeneedicarboxylate metal#8211;organic frameworks as photocatalysts for hydrogen generation [J]. Chemistry#8211;A European Journal, 2010, 16(36), 11133-11138. 3. Wang X , Maeda K , Thomas A , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2008, 8(1), 76-80. 4. Li Y , Lu G , Li S . Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2[J]. Applied Catalysis A General, 2001, 214(2), 179-185. 5. Kojima, Y. , Suzuki, K. I. , Fukumoto, K. , Sasaki, M. , Yamamoto, T. , Kawai, Y. , et al. (2002). Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy, 27(10), 1029-1034. 6. Chandra, M. , Xu, Q. . (2006). A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia#8211;borane. Journal of Power Sources, 156(2), 190-194. 7. Jeong, S. U. , Kim, R. K. , Cho, E. A. , Kim, H. J. , Nam, S. W. , Oh, I. H. , et al. (2005). A study on hydrogen generation from nabh4solution using the high-performance co-b catalyst. Journal of Power Sources, 144(1), 129-134. 8. Wang, G. , Yang, X. , Qian, F. , Zhang, J. Z. , Li, Y. . (2010). Double-sided cds and cdse quantum dot co-sensitized zno nanowire arrays for photoelectrochemical hydrogen generation. NANO LETTERS, 10(3), 1088-1092. 9. Fang, H. , Liu, H. . (2002). Effect of ph on hydrogen production from glucose by a mixed culture. Bioresour Technol, 82(1), 87-93. 10. Das, D. , Veziro?Lu, T. N. . (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28. 11. Kapdan, I. K. , Kargi, F. . (2006). Bio-hydrogen production from waste materials. Enzyme Microbial Technology, 38(5), 569-582. 12. Holladay, J. D. , Hu, J. , King, D. L. , Wang, Y. . (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244-260. 13. Klein S M , Cohen G , Cederbaum A I . Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical-generating systems[J]. Biochemistry, 1981, 20(21), 6006-6012. 14. Moran J J , Whitmore L M , Isern N G , et al. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park[J]. Extremophiles, 2016, 20(3), 291-299. 15. Heim L E , Konnerth H , Prechtl M H G . The Prospecting Shortcut to an Old Molecule: Formaldehyde Synthesis at Low Temperature in Solution[J]. Chemsuschem, 2016, 9(20), 2905-2907. 16. Loew O. Ueber einige katalytische Wirkungen[J]. Berichte Der Deutschen Chemischen Gesellschaft, 2010, 20(1), 144#8211;145. 17. Kapoor S, Barnabas F A, Sauer M C, et al. Kinetics of hydrogen formation from formaldehyde in basic aqueous-solutions [J]. Journal of Physical Chemistry, 1995, 99(18), 6857-6863. 18. Ashby, E. C. , Doctorovich, F. , Liotta, C. L. , Neumann, H. M. , Barefield, E. K. , Konda, A. , et al. (1993). Concerning the formation of hydrogen in nuclear waste. quantitative generation of hydrogen via a cannizzaro intermediate. Journal of the American Chemical Society, 115(3), 1171-1173. 19. Li Y, Chen T, Wang T, et al. Highly efficient hydrogen production from formaldehyde over Ag/γ-Al2O3 catalyst at room temperature [J]. International Journal of Hydrogen Energy, 2014, 39(17), 9114-9120. 20. Bi Y, Lu G. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature [J]. International Journal of Hydrogen Energy, 2008, 33(9), 2225-2232. 21. Preti D, Squarcialupi S, Fachinetti G. Aerobic, Copper-Mediated Oxidation of Alkaline Formaldehyde to Fuel-Cell Grade Hydrogen and Formate: Mechanism and Applications [J]. Angewandte Chemie International Edition, 2009, 48(26), 4763-4766. 22. Lutz A E, Bradshaw R W, Bromberg L, et al. Thermodynamic analysis of hydrogen production by partial oxidation reforming[J]. International Journal of Hydrogen Energy, 2004, 29(8), 809-816. 23. Bharadwaj S S, Schmidt L D. Catalytic partial oxidation of natural gas to syngas ☆[J]. Fuel Processing Technology, 1995, 42(2#8211;3), 109-127. 24. Lin, L. , Zhou, W. , Gao, R. , Yao, S. , Zhang, X. , Xu, W. , et al. (2017). Low-temperature hydrogen production from water and methanol using pt/α-moc catalysts. Nature, 544(7648), 80-83. 25. Yao S , Zhang X , Zhou W . Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction.[J]. Science Foundation in China, 2017, 357(3), 389. 26. Azenha C S R , Mateos-Pedrero C , S. Queir#243;s, et al. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from Methanol Steam Reforming[J]. Applied Catalysis B Environmental, 2017, 203, 400-407. 27. Bayat N , Rezaei M , Meshkani F . Methane decomposition over Ni#8211;Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber[J]. International Journal of Hydrogen Energy, 2016, 41(3), 1574-1584. 28. Ayodele B V , Hussein M A , Khan M R , et al. Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(1), 198-207. 29. Araiza D G , Antonio G#243;mez-Cort#233;s, Gabriela D#237;az. Partial oxidation of methanol over copper supported on nanoshaped ceria for hydrogen production[J]. Catalysis Today, 2017, 282, 185-194. 30. Ibrahim A A , Fakeeha A H , Al-Fatesh A S , et al. Methane decomposition over iron catalyst for hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(24), 7593-7600. 31. Schultz, M., G. . (2003). Air pollution and climate-forcing impacts of a global hydrogen economy. Science, 302(5645), 624-627. 32. Hu X , Zhang L , Lu G . Steam reforming of acetic acid over CuZnCo catalyst for hydrogen generation: Synergistic effects of the metal species[J]. International Journal of Hydrogen Energy, 2016, 41(32), 13960-13969. 33. An L , Dong C , Yang Y , et al. The influence of Ni loading on coke formation in steam reforming of acetic acid[J]. Renewable Energy, 2011, 36(3), 930-935. 34. Zhiwei Xue, Yuesong Shen, Peiwen Li, et al. Key Role of Lanthanum Oxychloride: Promotional Effects of Lanthanum in NiLaOy/NaCl for Hydrogen Production from Ethyl Acetate and Water [J]. Small, 2018, 14(34), 1-10.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 2018.12.23~2018.12.28 课题任务书 2018.12.28~2019.1.18 开题报告 2019.1.18~2019.2.21 文献综述、英文翻译与试验材料准备 2019.2.21~2019.4.9 设计实验方案、进行实验 2019.4.10~2019.5.2 实验 2019.5.3~2019.5.8 实验、中期答辩 2019.5.9~2019.5.30 实验、整理实验数据、毕业论文撰写 2019.5.31~2019.6.10 毕业论文撰写、答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图