登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

表面修饰对Mg-In-Ni储氢合金电极电化学性能的影响任务书

 2020-05-01 08:49:40  

1. 毕业设计(论文)的内容和要求

镁基储氢合金由于具有理论电化学容量高、密度小、资源丰富、价格低廉和对环境负荷小等优点,成为镍氢二次电池中最有发展前途的电池负极材料之一。

然而由于镁基储氢材料在强碱溶液中极易腐蚀,导致电极有效容量低、循环寿命差,以及材料本身存在放电动力学缓慢的问题,严重阻碍了镁基合金电极的实际应用。

本课题在实验室已有基础上,利用高能球磨和燃烧合成相结合的手段,成功制备了mg-in-ni体系储氢合金电极,为了进一步提高合金的电化学性能,探索表面修饰对合金电极电化学性能例如电化学容量、抗腐蚀性、抗粉化能力、动力学性能的影响。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Lu Y S, Zhu M, Wang H, et al. Reversible de-/hydriding characteristics of a novel Mg18In1Ni3 alloy[J]. International Journal of Hydrogen Energy, 2014, 39(26): 14033-14038. [2] Lu Y, Wang H, Liu J, et al. Reversible De/hydriding Reactions between Two New Mg#8211;In#8211;Ni Compounds with Improved Thermodynamics and Kinetics[J]. Journal of Physical Chemistry C, 2015, 119(48). [3] Liu, Y.F., et al., Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry, 2011. 21(13): 4743-4755. [4] Chalk, S.G. and J.E. Miller, Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources, 2006. 159(1): 73-80. [5] 陈军, 陶占良. 镍氢二次电池[M]. 北京: 化学工业出版社, 2006. [6] 唐有根, 李文良. 镍氢电池[M]. 北京: 化学工业出版社, 2007. [7] 马行驰, 岳留振, 何国求等. 机械合金化法制备镁基储氢合金的研究进展[J]. 材料导报, 2010, 24(1): 89-92. [8] 陈玉安, 周上祺, 丁培道. 镁基储氢合金制备方法的研究进展[J]. 材料导报, 2003, 17(10): 20-23. [9] Zhu Y F, Yang C, Zhu J Y, Li L Q. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys[J]. Journal of Alloys and Compounds, 2011;509: 5309-5314. [10] Kim J H, Yamamoto K, Yonezawa S, et al. Effects of Ni-PTFE composite plating on AB5-type hydrogen storage alloy[J]. Materials Letters, 2012;82: 217-219. [11] Goo N H, Woo J H, Lee K S. Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel[J]. Journal of Alloys and Compounds, 1999;288: 286-293. [12] Jurczyk M, Smardz L, Szajek A. Nanocrystalline materials for Ni#8211;MH batteries[J]. Mater Sci Eng, B, 2004;108: 67-75. [13] Shao H Y, Liu T, Wang Y T, et al. Preparation of Mg-based hydrogen storage materials from metal nanoparticles[J]. Journal of Alloys and Compounds, 2008;465: 527-33. [14] Hou X J, Hu R, Zhang T B, et al. Microstructure and electrochemical hydrogenation/dehydrogenation performance of melt-spun La-doped Mg2Ni alloys[J]. Materials Characterization, 2015; 106: 163-174. [15] Chen W, Zhu Y, Yang C, Zhang J, Li M, Li L. Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel. Journal of Power Sources. 2015;280:132-40. [16] Du Y, Li N, Zhang T-L, Feng Q-P, Du Q, Wu X-H, et al. Reduced Graphene Oxide Coating with Anticorrosion and Electrochemical Property-Enhancing Effects Applied in Hydrogen Storage System. Acs Applied Materials Interfaces. 2017;9:28980-9. [17] Li M, Zhu Y, Yang C, Zhang J, Chen W, Li L. Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel. International Journal of Hydrogen Energy. 2015;40:13949-56. [18] Ohara R, Lan C-H, Hwang C-S. Electrochemical and structural characterization of electroless nickel coating on Mg2Ni hydrogen storage alloy. Journal of Alloys and Compounds. 2013;580:S368-S72. [19] Rongeat C, Grosjean MH, Ruggeri S, Dehmas A, Bourlot S, Marcotte S, et al. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries. Journal of Power Sources. 2006;158:747-53. [20] Santos SF, de Castro JFR, Ishikawa TT, Ticianelli EA. Effect of transition metal additions on the electrochemical properties of a MgNi-based alloy. Journal of Alloys and Compounds. 2007;434:756-9. [21] Santos SF, De Castro JFR, Ishikawa TT, Ticianelli EA. Effect of mechanical coating with Ni and Ni-5% Al on the structure and electrochemical properties of the Mg-50% Ni alloy. Journal of Materials Science. 2008;43:2889-94. [22] Tang R, Liu YN, Zhu JW, Yu G. Electrochemical properties of Co-free Ml0.8Mg0.2Ni3.4Al0.4 hydrogen storage alloy ballmilled with Ni and Mo. Journal of the Electrochemical Society. 2004;151:A1774-A7. [23] Wang CY, Yao P, Bradhurst DH, Liu HK, Dou SX. Surface modification of Mg2Ni alloy in an acid solution of copper sulfate and sulfuric acid. Journal of Alloys And Compounds. 1999;285:267-71. [24] Wu DC, Li L, Liang GY, Guo YL, Wu HB. Improved electrochemical properties of amorphous Mg65Ni27La8 electrodes: Surface modification using graphite. Journal of Power Sources. 2009;189:1251-5. [25] Yang K, Chen DM, Chen LA, Zhang HF, Sun WS, Li YY. Modification of a rapidly solidified hydrogen storage electrode alloy by ball-milling with Co3Mo. Journal of Alloys and Compounds. 1999;293:670-4. [26] Lee H-J, Yang D-C, Park C-J, Park C-N, Jang H-J. Effects of surface modifications of the LMNi3.9Co0.6Mn0.3Al0.2 alloy in a KOH/NaBH4 solution upon its electrode characteristics within a Ni-MH secondary battery. International Journal of Hydrogen Energy. 2009;34:481-6. [27] Raju M, Ananth MV, Vijayaraghavan L. Influence of electroless coatings of Cu, Ni-P and Co-P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in Ni-MH batteries. Journal of Alloys and Compounds. 2009;475:664-71. [28] Wu QD, Liu S, Li L, Yan TY, Gao XP. High-temperature electrochemical performance of Al-alpha-nickel hydroxides modified by metallic cobalt or Y(OH)3. Journal of Power Sources. 2009;186:521-7. [29] Zhang B, Wu W, Yin S, Li S, Luo Y, Bian X, et al. Process optimization of electroless copper plating and its influence on electrochemical properties of AB5-type hydrogen storage alloy. Journal of Rare Earths. 2010;28:922-6. [30] Lee SL, Huang CY, Chou YW, Hsu FK, Horng JL. Effects of Co and Ti on the electrode properties of Mg3MnNi2 alloy by ball-milling process. Intermetallics. 2013;34:122-7. [31] Wang Y, Lee JM, Wang X. An investigation of the origin of the electrochemical hydrogen storage capacities of the ball-milled Co-Si composites. International Journal of Hydrogen Energy. 2010;35:1669-73.

3. 毕业设计(论文)进程安排

2018.12.14-2018.12.31 中国期刊网、维普数据库以及外文数据库等数据库查阅国内外相关文献; 2019.1.1-2019.1.15 撰写开题报告及外文文献翻译,开题报告答辩; 2019.2.24-2019.4.24 利用球磨的手段对Mg-In-Ni三元合金进行表面修饰,制备电极,测试其电化学性能; 2019.4.25-2019.5.10 中期检查与答辩; 2019.5.11-2019.5.19 分析不同元素表面修饰对电极电化学性能的影响的原因; 2019.5.20-2019.5.31 撰写毕业论文; 2019.6.01-2019.6.14 完成毕业论文及答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图