类水滑石催化剂的制备及对MgH2储氢性能的影响任务书
2020-05-01 08:49:41
1. 毕业设计(论文)的内容和要求
内容:基于类水滑石结构拓扑转变的特性,采用煅烧还原法制备高分散镍基纳米催化剂。
通过设计水滑石的层板化学组分和尺寸形貌,来探究不同成分催化剂对镁基储氢材料的性能改善,并初步探究催化剂改善镁基材料储氢性能的机理。
本项目研究将有助于将水滑石应用在镁基储氢材料的领域。
2. 参考文献
[1] Schlapbach L, Z#252;ttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353-8. [2] He T, Pachfule P, Wu H, Xu Q, Chen P. Hydrogen carriers. Nat Rev Mater. 2016;1:16059. [3] Mohtadi R, Orimo S-i. The renaissance of hydrides as energy materials. Nat Rev Mater. 2017;2. [4] Zhu M, Wang H, Ouyang LZ, Zeng MQ. Composite structure and hydrogen storage properties in Mg-base alloys. Int J Hydrogen Energy. 2006;31:251-7. [5] Ouyang L, Chen W, Liu J, Felderhoff M, Wang H, Zhu M. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv Energy Mater. 2017;7. [6] Liu T, Wang C, Wu Y. Mg-based nanocomposites with improved hydrogen storage performances. Int J Hydrogen Energy. 2014;39:14262-74. [7] Shao H, He L, Lin H, Li H-W. Progress and trends in magnesium-based materials for energy-storage research: A Review. Energy Technology. 2018;6:445-58. [8] Jeon K-J, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater. 2011;10:286-90. [9] Fu H, Wu W, Dou Y, Liu B, Li H, Peng Q. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface. J Power Sources. 2016;320:212-21. [10] Shinde SS, Kim D-H, Yu J-Y, Lee J-H. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale. 2017;9:7094-103. [11] Malka IE, Czujko T, Bystrzycki J. Catalytic effect of halide additives ball milled with magnesium hydride. Int J Hydrogen Energy. 2010;35:1706-12. [12] House SD, Vajo JJ, Ren C, Rockett AA, Robertson IM. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. Acta Mater. 2015;86:55-68. [13] Liu SS, Sun LX, Zhang Y, Xu F, Zhang J, Chu HL, et al. Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4. Int J Hydrogen Energy. 2009;34:8079-85. [14] Lin H-J, Tang J-J, Yu Q, Wang H, Ouyang L-Z, Zhao Y-J, et al. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump. Nano Energy. 2014;9:80-7. [15] Du AJ, Smith SC, Yao XD, Lu GQ. Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation. J Am Chem Soc. 2007;129:10201-4. [16] Zhan GW, Zeng HC. Hydrogen spillover through matryoshka-type (ZIFs@)(n-1)ZIFs nanocubes. Nat Commun. 2018;9:12. [17] Zhang L, Chen L, Fan X, Xiao X, Zheng J, Huang X. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J Am Chem Soc. 2017;5:6178-85. [18] Cui J, Wang H, Liu J, Ouyang L, Zhang Q, Sun D, et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J Mater Chem A. 2013;1:5603-11.
3. 毕业设计(论文)进程安排
2018.12.14-2018.12.31 中国期刊网、维普数据库以及外文数据库等数据库查阅国内外相关文献: 2019.1.1-2019.1.15 撰写开题报告及外文文献翻译,开题报告答辩; 2019.2.24-2019.4.24 类水滑石催化剂的合成与制备,催化剂添加MgH2样品储氢性能表征与测试; 2019.4.25-2019.5.10 中期检查与答辩; 2019.5.11-2019.5.19 实验数据补充与完善,数据分析与处理; 2019.5.20-2019.5.31 撰写毕业论文; 2019.6.01-2019.6.14 完成毕业论文及答辩; 2018.6.15-2019.6.30 总结、归档