登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

氧化镁对Mg95Ni5储氢性能的影响任务书

 2020-05-01 08:50:31  

1. 毕业设计(论文)的内容和要求

镁基储氢材料是一种比较理想的固态储氢材料,但是其脱氢的热力学和动力学性能不佳,阻碍了其实际应用。

目前研究人员主要从纳米化、催化、合金化和多相复合等方法改善其动力学或热力学性能。

其中复合改性是一种将不同储氢材料复合在一起以发挥各组分储氢性能优势的改性方法。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Barbir F. Transition to renewable energy systems with hydrogen as an energy carrier[J]. Energy, 2009, 34(3): 308-12. [2] David E. An overview of advanced materials for hydrogen storage[J]. Journal of Materials Processing Technology, 2005, 162-163169-77. [3] He T, Pachfule P, Wu H, et al. Hydrogen carriers[J]. Nature Reviews Materials, 2016, 116059. [4] Chen P, Zhu M. Recent progress in hydrogen storage[J]. Materials Today, 2008, 11(12): 36-43. [5] Jena P. Materials for Hydrogen storage: past, present, and future[J]. The Journal of Physical Chemistry Letters, 2011, 2(3): 206-11. [6] Winter C J. Hydrogen energy #8212; Abundant, efficient, clean: a debate over the energy system of change[J]. International Journal of Hydrogen Energy, 2009, 34(14, Supplement 1): S1-S52. [7] 胡子龙. 贮氢材料[M]. 北京:化学工业出版社,2002. [8] Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1184-203. [9] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. [10] Wang H, Lin H J, Cai W T, et al. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems- a review of recent progress[J]. Journal of Alloys and Compounds, 2016, 658280-300. [11] Aguey-Zinsou K F, Ares-Fern#225;ndez J R. Hydrogen in magnesium: new perspectives toward functional stores[J]. Energy Environmental Science, 2010, 3(5): 526. [12] House S D, Vajo J J, Ren C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials[J]. Acta Materialia, 2015, 86: 55-68. [13] Yermakov A Y, Boukhvalov D W, Uimin M A, et al. Hydrogen dissociation catalyzed by carbon-coated nickel nanoparticles: experiment and theory[J]. ChemPhysChem, 2013, 14(2): 381-5. [14] Lin H J, Tang J J, Yu Q, et al. Symbiotic CeH2.73/CeO2 catalyst: a novel hydrogen pump[J]. Nano Energy, 2014, 9: 80-7. [15] Yang R T, Wang Y. Catalyzed hydrogen spillover for hydrogen storage[J]. Journal of the American Chemical Society, 2009, 131(12): 4224-6. [16] Liu Y N, Zou J X, Zeng X Q, et al. Hydrogen storage properties of a Mg#8211;Ni nanocomposite coprecipitated from solution[J]. The Journal of Physical Chemistry C, 2014, 118(32): 18401-11. [17] Wagemans R W P, van Lenthe J H, de Jongh P E, et al. Hydrogen storage in magnesium clusters:#8201; quantum chemical study[J]. Journal of the American Chemical Society, 2005, 127(47): 16675-80. [18] Fu H, Wu W, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface[J]. Journal of Power Sources, 2016, 320212-21. [19] An C, Liu G, Li L, et al. In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2[J]. Nanoscale, 2014, 6(6): 3223-30. [20] Xie X, Ma X, Liu P, et al. Formation of multiple-phase catalysts for the hydrogen storage of mg nanoparticles by adding flowerlike NiS[J]. ACS Applied Materials Interfaces, 2017, 9(7): 5937-46. [21] Wang J H, Pan H G, Li R, et al. The effect of particle size on the electrode performance of Ti-V-based hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3381-6. [22] Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. Journal of the American Chemical Society, 2011, 133(28): 10679-81. [23] Tsao C S, Tzeng Y R, Yu M S, et al. Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover[J]. Journal of Physical Chemistry Letters, 2010, 1(7): 1060-3. [24] Li G, Kobayashi H, Dekura S, et al. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?[J]. Journal of the American Chemical Society, 2014, 136(29): 10222-5. [25] Hassan M A H, Abdelsayed V, Khder A E R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media[J]. Journal of Materials Chemistry, 2009, 19(23): 3832-7. [26] Nouneh K, Oyama M, Diaz R, et al. Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches[J]. Journal of Alloys and Compounds, 2011, 509(19): 5882-6. [27] Sidhaye D S, Bala T, Srinath S, et al. Preparation of nearly monodisperse nickel nanoparticles by a facile solution based methodology and their ordered assemblies[J]. Journal of Physical Chemistry C, 2009, 113(9): 3426-9. [28] Chen D H, Wu S H. Synthesis of nickel nanoparticles in water-in-oil microemulsions[J]. Chemistry of Materials, 2000, 12(5): 1354-60. [29] Pan Y, Jia R, Zhao J, et al. Size-controlled synthesis of monodisperse nickel nanoparticles and investigation of their magnetic and catalytic properties[J]. Applied Surface Science, 2014, 316276-85. [30] Hou Y, Kondoh H, Ohta T, et al. Size-controlled synthesis of nickel nanoparticles[J]. Applied Surface Science, 2005, 241(1-2): 218-22. [31] Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-30.

3. 毕业设计(论文)进程安排

2018.12.25~ 2019.1.11 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2019.1.12 ~ 2019.1.18 撰写开题报告 2019.1.19 ~ 2019.3.5 HCS MM法制备Mg95Ni5 2019.3.6 ~ 2019.3.26 通过机械球磨向Mg95Ni5储氢材料中加入不同尺度和形貌的MgO,并研究其储氢性能 2019.3.27~ 2019.4.14 通过HCS MM法一步制备Mg95Ni5 MgO复合材料,并研究其储氢性能 2019.4.15 ~ 2019.5.7 探究MgO对Mg95Ni5储氢性能的催化原理 2018.5.8~ 2018.6.3 撰写毕业论文 2018.6.4~ 2018.6.14 完成毕业论文及答辩 2018.6.15~ 2018.7.12 总结、归档

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图