登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

石墨烯/炭气凝胶正极材料制备及电化学性能任务书

 2020-05-02 17:09:54  

1. 毕业设计(论文)的内容和要求

本论文的主要内容是对锂硫电池用石墨烯/炭气凝胶正极材料国内外的研究现状、应用与发展进行了简要的阐述。

简述石墨烯/炭气凝胶复合材料的结构特点、溶胶-凝胶制备工艺和应用前景。

对不同类型石墨烯/炭气凝胶复合材料的制备参数及其性能表征进行了研究,同时将其作为正极材料应用于锂硫电池中,这对于利用提高锂电池的容量以及循环性能,促进清洁能源的使用具有重要的意义。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19#8211;29. [2] BIENER J, STADERMANN M, SUSS M, et al. Advanced carbon aerogels for energy applications[J]. Energy amp; Environmental Science, 2011, 4(3): 656. [3] MANTHIRAM A, FU Y, SU Y-S. Challenges and Prospects of Lithium-Sulfur Batteries[J]. 2012, 46(5): 1125#8211;1134. [4] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2010, 22(3): 587#8211;603. [5] WORSLEY M A, KUNTZ J D, CERVANTES O, et al. Route to high surface area TiO2/C and TiCN/C composites[J]. Journal of Materials Chemistry, 2009, 19(38): 7146. [6] 谷穗, 靳俊, 卢洋, 等. 锂硫电池的穿梭效应与抑制[J]. 储能科学与技术, 2017, 6(05): 1026#8211;1040. [7] PENG HONG‐JIE, HUANG JIA‐QI, CHENG XIN‐BING, et al. Review on High‐Loading and High‐Energy Lithium#8211;Sulfur Batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700260. [8] 蔡之望, 刘峙嵘. 石墨烯气凝胶材料的合成与应用研究现状[J]. 湿法冶金, 2017, 36(6): 440-445 451. [9] 徐刚, 张春梅, 薛文超, 等. 石墨烯及其气凝胶的制备方法综述[J]. 装备制造技术, 2016(11): 60#8211;64. [10] 易上琪, 刘洪波, 夏笑虹, 等. 石墨烯/炭气凝胶的制备及其结构与性能研究[J]. 无机材料学报, 2015, 30(07): 757#8211;762. [11] ZHANG Y, WANG R, TANG W, et al. Efficient polysulfide barrier of a graphene aerogel-carbon nanofibers-Ni network for high-energy-density lithium-sulfur batteries with ultrahigh sulfur content[J]. Journal of Materials Chemistry A, 2018, 6(42): 20926#8211;20938. [12] HSAN N, DUTTA P K, KUMAR S, et al. Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study[J]. International Journal of Biological Macromolecules, 2018, 125: 300#8211;306. [13] WUTTHIPROM J, PHATTHARASUPAKUN N, KHUNTILO J, et al. Collaborative design of Li-S batteries using 3D N-doped graphene aerogel as a sulfur host and graphitic carbon nitride paper as an interlayer[J]. Sustainable Energy amp; Fuels, 2017, 1(8): 1759#8211;1765. [14] XIN Z, LI W, FANG W, et al. Enhanced specific surface area by hierarchical porous graphene aerogel/carbon foam for supercapacitor[J]. Journal of Nanoparticle Research, 2017, 19(12): 386. [15] LEI Q, SONG H, CHEN X, et al. Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles[J]. Rsc Advances, 2016, 6(47): 40683#8211;40690. [16] WANG J, ELLSWORTH M. Graphene Aerogels[J]. ECS Transactions, 2009, 19(5): 241#8211;247. [17] WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of Graphene Aerogel with High Electrical Conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067#8211;14069. [18] ZHANG X, SUI Z, XU B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494#8211;6497. [19] GUO K, SONG H, CHEN X, et al. Graphene oxide as an anti-shrinkage additive for resorcinol#8211;formaldehyde composite aerogels[J]. Physical Chemistry Chemical Physics, 2014, 16(23): 11603#8211;11608. [20] QIAN Y, ISMAIL I M, STEIN A. Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol[J]. Carbon, 2014, 68: 221#8211;231. [21] LEE Y J, PARK H W, HONG U G, et al. Characterization and Electrochemical Performance of Graphene-Containing Carbon Aerogel for Supercapacitor[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(12): 7944#8211;7949. [22] LEE Y J, KIM G-P, BANG Y, et al. Activated carbon aerogel containing graphene as electrode material for supercapacitor[J]. Materials Research Bulletin, 2014, 50: 240#8211;245. [23] LIM M B, HU M, MANANDHAR S, et al. Ultrafast sol-gel synthesis of graphene aerogel materials[J]. Carbon, 2015, 95: 616#8211;624. [24] CHU A, QIN M, JIANG X, et al. Preparation of TiN nanopowder by carbothermal reduction of a combustion synthesized precursor[J]. MATERIALS CHARACTERIZATION, 2013, 81:76#8211;84. [25] DONG S, CHEN X, GU L, et al. Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage[J]. ACS Applied Materials amp; Interfaces, 2011, 3(1): 93#8211;98. [26] 森维, 徐宝强, 杨斌, 等. 碳化钛粉末制备方法的研究进展[J]. 轻金属, 2010(12): 44#8211;48. [27] BAUMANN T F, WORSLEY M A, HAN T Y-J, et al. High surface area carbon aerogel monoliths with hierarchical porosity[J]. Journal of Non-Crystalline Solids, 2008, 354(29): 3513#8211;3515. [28] 于仁红, 王宝玉, 蒋明学, 等. 碳热还原氮化法制备碳氮化钛粉末[J]. 耐火材料, 2006(01): 9#8211;11. [29] BALAKUMAR K, KALAISELVI N. High sulfur loaded carbon aerogel cathode for lithium#8211;sulfur batteries[J]. RSC Advances, 2015, 5(43): 34008#8211;34018. [30] 唐志伟, 徐飞, 梁业如, 等. 层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能[J]. 新型炭材料, 2015(04): 319#8211;326. [31] PENG H-J, ZHANG G, CHEN X, et al. Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries[J]. Angewandte Chemie, 2016, 128(42): 13184#8211;13189. [32] BAO W, SU D, ZHANG W, et al. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries[J]. Advanced Functional Materials, 2016, 26(47): 8746#8211;8756. [33] SONG J, GORDIN M L, XU T, et al. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes[J]. Angewandte Chemie International Edition, 2015, 54(14): 4325#8211;4329.

3. 毕业设计(论文)进程安排

2018.12.18~2018.12.21查阅文献资料 2018.12.22~2019.1.18拟定实验方案,撰写开题报告 12.30~1.1元旦假期 2019.2.25~2019.4.15完成初步实验工作,并开展初步测试 4.5~4.7清明假期 2019.4.16~2019.6.3进行中期检查,完成实验和测试 5.1~5.2五一假期 2019.6.4~2019.6.14撰写毕业论文,答辩 6.7~6.9端午假期

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图