Co@C和YH2协同催化对MgH2储氢性能的影响任务书
2020-05-04 21:22:30
1. 毕业设计(论文)的内容和要求
储氢合金具有储氢量大、安全可靠、对环境无污染等优点,并且金属氢化物分解放出来的氢气纯度比较高,可以直接应用于pem燃料电池,因此被公认为是最具有发展前景的储氢方式之一。
众多储氢合金,特别是镁基合金储氢材料,因其储氢密度高、资源丰富、价格低廉等优点得到了越来越多的关注。
但镁基储氢材料的脱氢动力学性能较差,热力学稳定性高,难以达到实际应用的需求。
2. 参考文献
[1] T. Yang, P. Wang, Q. Li, C. Xia, F. Yin, C. Liang, Y. Zhang, Hydrogen absorption and desorption behavior of Ni catalyzed Mg#8211;Y#8211;C#8211;Ni nanocomposites, Energy, 165 (2018) 709-719. [2] T. Yang, Q. Li, N. Liu, C. Liang, F. Yin, Y. Zhang, Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium, Journal of Power Sources, 378 (2018) 636-645. [3] Q. Li, Y. Li, B. Liu, X.G. Lu, T.F. Zhang, Q.F. Gu, The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2, J. Mater. Chem. A, 5 (2017) 17532-17543. [4] T. Yang, Z.M. Yuan, W.G. Bu, Z.C. Jia, Y. Qi, Y.H. Zhang, Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy, International Journal of Hydrogen Energy, 41 (2016) 2689-2699. [5] G. Sun, Y. Li, X. Zhao, J. Wu, L. Wang, Y. Mi, First-principles investigation of the effects of Ni and Y co-doped on destabilized MgH2, Rsc Advances, 6 (2016) 23110-23116. [6] S. Long, J. Zou, X. Chen, X. Zeng, W. Ding, A comparison study of Mg#8211;Y2O3 and Mg#8211;Y hydrogen storage composite powders prepared through arc plasma method, Journal of Alloys and Compounds, 615 (2014) S684-S688. [7] M. Pourabdoli, S. Raygan, H. Abdizadeh, D. Uner, A comparative study for synthesis methods of nano-structured (9Ni-2Mg-Y) alloy catalysts and effect of the produced alloy on hydrogen desorption properties of MgH2, International Journal of Hydrogen Energy, 38 (2013) 16090-16097. [8] L. ChitsazKhoyi, S. Raygan, M. Pourabdoli, Mechanical milling of Mg, Ni and Y powder mixture and investigating the effects of produced nanostructured MgNi4Y on hydrogen desorption properties of MgH2, International Journal of Hydrogen Energy, 38 (2013) 6687-6693. [9] S. Kalinichenka, L. Roentzsch, T. Riedl, T. Gemming, T. Weissgaerber, B. Kieback, Microstructure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys, International Journal of Hydrogen Energy, 36 (2011) 1592-1600. [10] S. Kalinichenka, L. Roentzsch, C. Baehtz, T. Weissgaerber, B. Kieback, Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA, Journal of Alloys and Compounds, 509 (2011) S629-S632. [11] T.Z. Si, Y.F. Liu, Q.A. Zhang, Hydrogen storage properties of the supersaturated Mg12YNi solid solution, Journal of Alloys and Compounds, 507 (2010) 489-493. [12] S. Kalinichenka, L. Roentzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg-Ni-Y alloys, International Journal of Hydrogen Energy, 34 (2009) 7749-7755. [13] Z. Li, X. Liu, Z. Huang, L. Jiang, S. Wang, Preparation and hydrogen sorption properties of Mg-Cu-Y-H systems, Rare Metals, 25 (2006) 89-94. [14] M. Hara, S. Morozumi, K. Watanabe, Effect of a magnesium depletion on the Mg-Ni-Y alloy hydrogen absorption properties, Journal of Alloys and Compounds, 414 (2006) 207-214. [15] H. Shao, L. He, H. Lin, H.-W. Li, Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review, Energy Technology, 6 (2018) 445-458. [16] J. Li, B. Li, H. Shao, W. Li, H. Lin, Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials, Catalysts, 8 (2018) 89. [17] X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Progress in Materials Science, 88 (2017) 1-48. [18] T. Liu, C. Wang, Y. Wu, Mg-based nanocomposites with improved hydrogen storage performances, International Journal of Hydrogen Energy, 39 (2014) 14262-14274. [19] Y.H. Zhang, H.P. Ren, B.W. Li, S.H. Guo, Z.G. Pang, X.L. Wang, Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10-xCox(x=0-4) alloys prepared by melt spinning, International Journal of Hydrogen Energy, 34 (2009) 8144-8151. [20] H. Shao, K. Asano, H. Enoki, E. Akiba, Fabrication, hydrogen storage properties and mechanistic study of nanostructured Mg50Co50 body-centered cubic alloy, Scripta Materialia, 60 (2009) 818-821.
3. 毕业设计(论文)进程安排
2018.12.14~2018.12.31 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2019.1.01 ~ 2019.1.12 撰写开题报告及外文文献翻译,开题报告答辩 2019.2.24 ~ 2019.4. 26 研究制备Co@C催化剂的工艺 2019.4.27 ~ 2019.5.10 中期检查与答辩 五一放假 2019.5.11~ 2019.5.30 将催化剂与MgH2复合,探索其微观形貌和储氢性能 2019.5.31~ 2019.6.6 撰写毕业论文 2019.6.7~ 2019.6.14 完成毕业论文及答辩 2019.6.14~ 2019.7.5 总结、归档