二维层状Ti3C2(TiO2-C)对MgH2储氢性能的影响任务书
2020-05-04 21:22:56
1. 毕业设计(论文)的内容和要求
储氢合金具有储氢量大、安全可靠、对环境无污染等优点,并且金属氢化物分解放出来的氢气纯度比较高,可以直接应用于pem燃料电池,因此被公认为是最具有发展前景的储氢方式之一。
众多储氢合金,特别是镁基合金储氢材料,因其储氢密度高、资源丰富、价格低廉等优点得到了越来越多的关注。
但镁基储氢材料的脱氢动力学性能较差,热力学稳定性高,同时纳米镁基储氢材料在较高工作温度易发生团聚长大,很难保持稳定纳米结构,循环吸放氢性能较差,因此仍然达不到实际应用的需求。
2. 参考文献
[1] J. Tollefson, Fuel of the future, Nature 464 (2010) 1262?264. [2] L. Schlapbach, A. Z黷tel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353?58. [3] T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Hydrogen carriers, Nat. Rev. Mater 2 (2017) 16059. [4] X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci. 88 (2017) 1?8. [5] R. Mohtadi, S. Orimo, The renaissance of hydrides as energy materials, Nat. Rev. Mater 2 (2017) 16091. [6] Y.F. Liu, Y.X. Yang, M.X. Gao, H.G. Pan, Tailoring thermodynamics and kinetics for hydrogen storage in complex hydrides towards applications, Chem. Rec. 16 (2016) 189?04. [7] M. Lototskyy, V.A. Yartys, Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials, J. Alloys Compd. 645 (2015) S365朣373. [8] K. O'Malley, G. Ordaz, J. Adams, K. Randolph, C.C. Ahn, N.T. Stetson, Applied hydrogen storage research and development: a perspective from the U.S. Department of Energy, J. Alloys Compd. 645 (2015) S419朣422. [9] H.W. Li, Y.G. Yan, S. Orimo, A. Z黷tel, C.M. Jensen, Recent progress in metal borohydrides for hydrogen storage, Energies 4 (2011) 185?14. [10] M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Hydrogen storage in magnesium-based hydrides and hydride composites, Scr. Mater 56 (2007) 841?46. [11] J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Mil鑙us, G.S. Walker, C.J. Webb, C. Zlotea, V.A. Yartys, Review of magnesium hydride-based materials: development and optimisation, Appl. Phys. A 122 (2016) 97?17. [12] I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: a most promising material, Int. J. Hydrogen Energy 35 (2010) 5133?144. [13] C. Pistidda, N. Bergemann, J. Wurr, A. Rzeszutek, K.T. M竘ler, B.R.S. Hansen, S. Garroni, C. Horstmann, C. Milanese, A. Girella, O. Metz, K. Taube, T.R. Jensen, D. Thomas, H.P. Liermann, T. Klassen, M. Dornheim, Hydrogen storage systems from waste Mg alloys, J. Power Sources 270 (2014) 554?63. [14] R. Hardian, C. Pistidda, A.-L. Chaudhary, G. Capurso, G. Gizer, H. Cao, C. Milanese, A. Girella, A. Santoru, D. Yigit, H. Dieringa, K.U. Kainer, T. Klassen, M. Dornheim, Waste Mg-Al based alloys for hydrogen storage, Int. J. Hydrogen Energy 43 (2018), https://doi.org/10.1016/j.ijhydene.2017.12.014. [15] W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloy Compd. 315 (2001) 237?42. [16] G. Barkhordarian, T. Klassen, R. Bormann, Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction, J. Phys. Chem. 110 (2006) 11020?1024. [17] B.H. Chen, Y.S. Chuang, C.K. Chen, Improving the hydrogenation properties of MgH2 at room temperature by doping with nano-size ZrO2 catalyst, J. Alloys Compd. 655 (2016) 21?7. [18] N. Hanada, T. Ichikawa, S. Hino, H. Fujii, Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5 , J. Alloys Compd. 420 (2006) 46?9. [19] J. Chen, G.L. Xia, Z.P. Guo, Z.G. Huang, H.K. Liu, X.B. Yu, Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2 , J. Mater. Chem. A 3 (2015) 15843?5848. [20] G. Liang, J. Huot, S. Boily, A.V. Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2 -Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd 292 (1999) 247?52. [21] J. Cui, H. Wang, J.W. Liu, L.Z. Ouyang, Q.A. Zhang, D.L. Sun, X.D. Yao, M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts, J. Mater. Chem. A 1 (2013) 5603?611. [22] Y.F. Liu, H.F. Du, X. Zhang, Y.X. Yang, M.X. Gao, H.G. Pan, Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride, Chem. Commun 52 (2016) 705?08. [23] D. Pukazhselvan, N. Nasani, P. Correia, E.C. Argibay, G.O. Irurueta, D.G. Stroppa, D.P. Fagg, Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH 2 , J. Power Sources 362 (2017) 174?83. [24] M.S. Yahya, M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behavior of MgH2, J. Energy Chem. 27 (2018), https://doi.org/10.1016/j.jechem.2017.10. 020.
3. 毕业设计(论文)进程安排
2018.12.14~2018.12.31 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2019.1.01 ~ 2019.1.12 撰写开题报告及外文文献翻译,开题报告答辩2019.2.24 ~ 2019.4. 26 通过调整氧化时间,探索最佳Ti3C2(TiO2-C)催化剂 2019.4.27 ~ 2019.5.10 中期检查与答辩 五一放假 2019.5.11~ 2019.5.30 将催化剂与MgH2复合,探索其微观形貌和储氢性能 2019.5.31~ 2019.6.6 撰写毕业论文 2019.6.7~ 2019.6.14 完成毕业论文及答辩 2019.6.14~ 2019.7.5 总结、归档