登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

Co3O4催化剂对Mg-Al合金储氢性能的影响任务书

 2020-05-04 21:29:59  

1. 毕业设计(论文)的内容和要求

mgh2是一种高效水解制氢材料,采用氢化燃烧合成法(hcs)法可以合成高纯度的mgh2,但耗时耗能,这是因为mg颗粒表面氧化膜的存在阻止h2进入颗粒内部与mg发生氢化反应。

实验发现添加10 at.% al可明显降低mg氢化所需时间,且al本身是一种制氢材料。

本课题旨在探索co3o4在mg-10 at.% al合金在储氢过程中的催化机理。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] P. Jena, Materials for Hydrogen Storage: Past, Present, and Future, J. Phys. Chem. Lett. 2 (2011) 206-211. [2] Y.F. Liu, X. Zhang, K. Wang, Y.X. Yang, M.X. Gao, H.G. Pan, Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO2@C-doped NaAlH4, J. Mater. Chem. A 4 (2016) 1087-1095. [3] J. Cui, L.Z. Ouyang, H. Wang, X.D. Yao, M. Zhu, On the hydrogen desorption entropy change of modified MgH2, J. Alloy Compd. 737 (2018) 427-432. [4] P. Adelhelm, P.E. de Jongh, The impact of carbon materials on the hydrogen storage properties of light metal hydrides, J. Mater. Chem. 21 (2011) 2417-2427. [5] H.W. Li, Y.G. Yan, S.I. Orimo, A. Z#252;ttel, C.M. Jensen, Recent Progress in Metal Borohydrides for Hydrogen Storage, Energies 4 (2011) 185-214. [6] X. Zhang, Y.F. Liu, K. Wang, Y. Li, M.X. Gao, H.G. Pan, Ultrafine nanocrystalline CeO2@C-containing NaAlH4 with fast kinetics and good reversibility for hydrogen storage, ChemSusChem 8 (2015) 4180-4188. [7] Y.P. Pang, Y.F. Liu, M.X. Gao, L.Z. Ouyang, J.W. Liu, H. Wang, M. Zhu, H.G. Pang, A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures, Nat. Commun. 5 (2014) 3519. [8] L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, M. Zhu, Enhancing the Regeneration Process of Consumed NaBH4 for Hydrogen Storage, Adv. Energy Mater. (2017) 1700299. [9] H.H. Cheng, K. Li, X.L. Fan, H.R. Lou, Y.Q. Liu, Q. Qi, J.M. Zhang, J.J. Liu, K. Yan, Y. Zhang, The enhanced de/re-hydrogenation performances of LiNa2AlH6 combined with two-dimension lamellar Ti3C2, Int. J. Hydrogen Energy 42 (2017) 25285-25293. [10] H.Y. Shao, G.B. Xin, J. Zheng, X.G. Li, E. Akiba, Nanotechnology in Mg-based materials for hydrogen storage, Nano Energy 1 (2012) 590-601. [11] H.H. Cheng, Y. Chen, W.P. Sun, H.R. Lou, Y.Q. Liu, Q. Qi, J.M. Zhang, J.J. Liu, K. Yan, H.M. Jin, Y. Zhang, S.Y. Yang, The enhanced dehydrogenation performances of 17MgH2-12Al composite with additive TiH2, J. Alloy Compd. 704 (2017) 769-775. [12] T. Z. Si, Y. Ma, Y.T. Li, D.M. Liu, Solid solution of Cu in Mg2NiH4 and its destabilized effect on hydrogen desorption, Mater. Chem. Phys. 193 (2017) 1-6. [13] H.H. Cheng, Y. Chen, W.P. Sun, H.R. Lou, Y.Q. Liu, Q. Qi, J.M. Zhang, J.J. Liu, K. Yan, H.M. Jin, Y. Zhang, S.Y. Yang, The enhanced de/re-hydrogenation performance of 4MgH2-NaAlH4 composite by doping with TiH2, J. Alloy Compd. 698 (2017) 1002-1008. [14]M.L. Ma, R.M. Duan, L.Z. Ouyang, X.K. Zhu, Z.L. Chen, C.H. Peng, M. Zhu, Hydrogen storage and hydrogen generation properties of CaMg2-based alloys, J. Alloy Compd. 691 (2017) 929-935. [15] K.F. Aguey-Zinsou, J.R. Ares-Fernandez, Hydrogen in magnesium: new perspectives toward functional stores, Energy Environ. Sci. 3 (2010) 526-543. [16] Y. Jia, C.H. Sun, S.H. Shen, J. Zou, S.S. Mao, X.D. Yao, Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage, Renew. Sust. Energy Rev. 44 (2015) 289-303. [17] S. Er, G.A. de Wijs, G. Brocks, Tuning the Hydrogen Storage in Magnesium Alloys, J. Phys. Chem. Lett. 1 (2010) 1982-1986. [18] J.G. Zhang, Y.F. Zhu, H.J. Lin, Y.N. Liu, Y. Zhang, S.Y. Li, Z.L. Ma, L.Q. Li, Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement, Adv. Mater. (2017) 1700760. [19] T. Liu, C.G. Qin, T.W. Zhang, Y.R. Cao, M. Zhu, X.G. Li, Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma-metal reaction, J. Mater. Chem. 22 (2012) 19831-19838. [20] X.Z. Xiao, C.C. Xu, J. Shao, L.T. Zhang, T. Qin, S.Q. Li, H.W. Ge, Q.D. Wang, L.X. Chen, Remarkable hydrogen desorption properties and mechanisms of the Mg2FeH6@MgH2 core-shell nanostructure, J. Mater. Chem. A 3 (2015) 5517-5524. [21] H. Wang, H.C. Zhong, L.Z. Ouyang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Fully Reversible De/hydriding of Mg Base Solid Solutions with Reduced Reaction Enthalpy and Enhanced Kinetics, J. Phys. Chem. C 118 (2014) 12087-12096. [22] Y.S. Lu, H. Wang, J.W. Liu, Z.M. Li, L.Z. Ouyang, M. Zhu, Hydrogen-Induced Reversible Phase Transformations and Hydrogen Storage Properties of Mg-Ag-Al Ternary Alloys, J. Phys. Chem. C 120 (2016) 27117-27127. [23]H.G. Pan, Y.F. Liu, M.X. Gao, Y.Q. Lei, Q.D. Wang, A Study of the Structural and Electrochemical Properties of La0.7Mg0.3(#8201;Ni0.85Co0.15#8201;)#8201;x #8201;(x=2.5-5.0)#8201; Hydrogen Storage Alloys, J. Electrochem. Soc. 150 (2003) A565-A570. [24] Z.M. Li, H. Wang, L.Z. Ouyang, J.W. Liu, M. Zhu, Increasing de-/hydriding capacity and equilibrium pressure by designing non-stoichiometry in Al-substituted YFe2 compounds, J. Alloy Compd. 704 (2017) 491-498. [25] L.Z. Ouyang, T.H. Yang, M. Zhu, T.Z. Luo, H. Wang, F.M. Xiao, R.H. Tang, Hydrogen storage and electrochemical properties of Pr, Nd and Co-free La13.9Sm24.7Mg1.5Ni58Al1.7Zr0.14Ag0.07 alloy as a nickel-metal hydride battery electrode, J. Alloy Compd. 735 (2018) 98-103. [26] C. Xu, H.J. Lin, K. Edalati, W. Li, L.Q. Li, Y.F. Zhu, Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion, Scripta Mater. 152 (2018) 137-140. [27]Y.F. Liu, H.G. Pan, Y.J. Yue, X.F. Wu, N. Chen, Y.Q. Lei, Cycling durability and degradation behavior of La-Mg-Ni-Co-type metal hydride electrodes, J. Alloy Compd. 395 (2005) 291-299. [28] Y.S. Lu, H. Wang, J.W. Liu, L.Z. Ouyang, L.K. Zhu, D.L. Zhang, M. Zhu, Reversible De/hydriding Reactions between Two New Mg-In-Ni Compounds with Improved Thermodynamics and Kinetics, J. Phys. Chem. C 119 (2015) 26858-26865. [29] K. Edalati, R. Uehiro, Y. Ikeda, H.W. Li, H. Emami, Y. Filinchuk, M. Arita, Z. Horita, Design and synthesis of a magnesium alloy for room temperature hydrogen storage, Acta Mater. 149 (2018) 88-96. [30] Q.A. Zhang, B. Zhao, M.H. Fang, C.R. Liu, Q.M. Hu, F. Fang, D.L. Sun, L.Z. Ouyang, M. Zhu, Nd1.5Mg0.5Ni7-Based Compounds: Structural and Hydrogen Storage Properties, Inorg. Chem. 51 (2012) 2976-2983. [31]H.J. Lin, J.J. Tang, Q. Yu, H. Wang, L.Z. Ouyang, Y.J. Zhao, J.W. Liu, W.H. Wang, M. Zhu, Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy 9 (2014) 80-87. [32] J.G. Zhang, R. Shi, Y.F. Zhu, Y.N. Liu, Y. Zhao, S.S. Li, L.Q. Li, Remarkable Synergistic Catalysis of Ni-Doped Ultrafine TiO2 on Hydrogen Sorption Kinetics of MgH2, ACS Appl. Mater. Inter. 10 (2018) 24975-24980. [33] Z.Y. Wang, Z.H. Ren, N. Jian, M.X. Gao, J.J. Hu, F. Du, H.G. Pan, Y.F. Liu, Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2, J. Mater. Chem. A 6 (2018) 16177-16185. [34] Z.L. Ma, J.G. Zhang, Y.F. Zhu, H.J. Lin, Y.N. Liu, Y. Zhao, D.L. Zhu, L.Q. Li, Facile Synthesis of Carbon Supported Nano-Ni Particles with Superior Catalytic Effect on Hydrogen Storage Kinetics of MgH2, ACS Appl. Energy Mater. 1 (2018) 1158-1165. [35] L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects ofin Situ Formed CeH2.73 and Ni in CeH2.73-MgH2-Ni Nanocomposites, J. Phys. Chem. C 118 (2014) 7808-7820. [36] H.Z. Liu, X.H. Wang, Y.A. Liu, Z.H. Dong, G.Z. Cao, S.Q. Li, M. Yan, Improved hydrogen storage properties of MgH2 by ball milling with AlH3: preparations, de/rehydriding properties, and reaction mechanisms, J. Mater. Chem. A 1 (2013) 12527-12535. [37] H.Z. Liu, X.H. Wang, Y.A. Liu, Z.H. Dong, H.W. Ge, S.Q. Li, M. Yan, Hydrogen Desorption Properties of the MgH2-AlH3 Composites, J. Phys. Chem. C 118 (2014) 37-45. [38] S.C. Luo, H.H. Han, H.X. Huang, J.G. Zhang, Y.N. Liu, Y.F. Zhu, Y. Zhang, B. Xu, L.Q. Li, Effect of Al* generated in situ in hydriding on the dehydriding properties of Mg-Al alloys prepared by hydriding combustion synthesis and mechanical milling, J. Alloy Compd. 750 (2018) 490-498. [39] Y. Jia, C.H. Sun, Y. Peng, W.Q. Fang, X.C. Yan, D.J. Yang, J. Zou, S.S. Mao, X.D. Yao, Metallic Ni nanocatalyst in situ formed from a metal-organic-framework by mechanochemical reaction for hydrogen storage in magnesium, J. Mater. Chem. A 3 (2015) 8294-8299. [40] C.H. An, G. Liu, L. Li, Y. Wang, C.C. Chen, Y.J. Wang, L.F. Jiao, H.T. Yuan, In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2, Nanoscale 6 (2014) 3223-3230. [41] J.G. Zhang, Y.F. Zhu, X.X. Zang, Q.Q. Huan, W. Su, D.L. Zhu, L.Q. Li, Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures, J. Mater. Chem. A 4 (2016) 2560-2570. [42]V. Pavlyuk, G. Dmytriva, I. Chumakc, O. Gut#64258;eischd, ,I. Lindemannd, H. Ehrenberg, High hydrogen content super-lightweight intermetallics from the Li-Mg-Si system, Int. J. Hydrogen storage 38 (2013) 5724-5737. [43]P. Wang, A.M. Wang, H.F. Zhang, B.Z. Ding, Z.Q. Hu, Hydriding properties of a mechanically milled Mg-50 wt.% ZrFe1.4Cr0.6 composite, J. Alloy Compd. 297 (2000) 240#8211;245. [44]G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems, J. Alloy Compd. 292 (1999) 247#8211;252. [45]J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper, Inorg. Chem. 6 (1967) 2220-2223. [46]J. Genossar, P.S. Rudman, The catalytic role of Mg2Cu in the hydriding and dehydriding of Mg, Z. Phys. Chem. 116 (1979) 215-224. [47]A. Karty, J. Genossar, P.S. Rudman, Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: pressure sweep method, J. Appl. Phys. 50 (1979) 7200-7209. [48]N. Hanada, T. Ichikawa, H. Fujii, Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling, J. Phys. Chem. B 109 (2005) 7188-7194. [49]N. Hanada, T. Ichikawa, S. Hino, H. Fujii, Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5, J. Alloy Compd. 420 (2006) 46-49. [50] M.K. Singh, A. Bhatnagar, S.K. Pandey, P.C. Mishra, O.N. Srivastava, Experimental and first principle studies on hydrogen desorption behavior of graphene nanofibre catalyzed MgH2, Int. J. Hydrogen Energy 42 (2017) 960-968. [51] G. Liu, Y.J. Wang, C.C. Xu, F.Y. Qiu, C.H. An, L. Li, L.F. Jiao, H.T. Yuan, Excellent catalytic effects of highly crumpled graphenenanosheets on hydrogenation/dehydrogenation of magnesium hydride, Nanoscale 5 (2013) 1074-1081. [52] Y. Wang, L. Li, C.H. An, Y.J. Wang. C.C. Chen, L.F. Jiao, H.T. Yuan, Facile synthesis of TiN decorated graphene and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride, Nanoscale 6 (2014) 6684-6691. [53]H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957) 1702-1706. [54]J.G. Zhang, S.Y. Li, Y.F. Zhu, H.J. Lin, Y.N. Liu, Y. Zhang, Z.L. Ma, L.Q. Li, Controllable fabrication of Ni-based catalysts and their enhancement on desorption properties of MgH2, J. Alloy Compd. 715 (2017) 329-336. [55]Z.J. Cao, L.Z. Ouyang, Y.Y. Wu, H. Wang, J.W. Liu, F. Fang, D.L. Sun, Q.A. Zhang, M. Zhu, Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling, J. Alloy Compd. 623 (2015) 354-358. [56]L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Enhanced dehydriding thermodynamics and kinetics in Mg(In)-MgF2 composite directly synthesized by plasma milling, J. Alloy Compd. 586 (2014) 113-117. [57]L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation, Int. J. Hydrogen Energy 38 (2013) 8881-8887.

3. 毕业设计(论文)进程安排

2018.12.21~ 2018.12.31:中国期刊网、维普数据库,Elsevier等数据库查阅国内外相关文献; 2019.1.04 ~ 2019.1.18:完成外文文献翻译,撰写开题报告,准备开题答辩; 2019.3.14 ~ 2019.4.5:探索Co3O4在Mg-10 at.% Al合金在吸放氢过程中所起作用; 2019.4.6 ~ 2019.5.2:中期检查与答辩; 2019.5. 3~ 2019.5.10:测试、分析在Co3O4对Mg-10 at.% Al合金在吸放氢过程起到催化作用及机制探索; 2019.5.11 ~ 2019.5.15:阅读相关文献,结合实验分析手段,对该现象做出合理解释; 2019.5.16~ 2019.5.29:撰写毕业论文; 2019.5.30~ 2019.6.5:完成毕业论文及答辩; 2019.6.6~ 2019.7.12:总结、归档。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图