环氧吸波泡沫的真空发泡制备方法及吸波性能研究毕业论文
2021-07-12 22:34:08
摘 要
吸波材料是国防工业与民用领域中的一类重要的材料,吸波泡沫作为结构吸波材料领域的重要分支,凭借其良好的吸波性能、较高的比强度而倍受关注。但是对吸波泡沫的研究大多集中在聚氨酯基的泡沫材料,在一些对强度和阻燃性等要求较高的场合难以满足使用标准,并且发泡手段依赖物理和化学发泡剂,过程复杂,经济性、环保性不足。本论文针对以上问题以环氧树脂泡沫吸波材料为研究对象,发展了一种简单、无添加剂的真空发泡方法。主要研究内容和取得的成果如下:
1、利用黏性液体在搅拌作用下能产生并稳定泡沫的这一特征,通过详细研究搅拌过程中各个参数对环氧树脂及固化剂混合体系的起泡作用,并引入真空发泡过程,探讨真空发泡参数对最终形成泡沫材料的影响,获得了发泡率可控、泡孔均匀的高质量发泡方法,避免了对发泡剂的使用。研究结果发现,增加机械搅拌的速率和时间能够提高气泡的融入和均匀性,但是随着时间增加到一定程度,在机械搅拌速率一定的条件下,气泡率趋于一个稳定值。而在气泡引入后的真空发泡过程中,可通过降低气压和升高温度的方法提升发泡率,泡沫的膨胀可用理想气体状态方程式描述。通过以上条件的控制,我们可以获得泡孔均匀、发泡率在0 ~ 6之间的低、中、高发泡率的环氧树脂泡沫材料,也能控制发泡条件以获得闭孔或开孔的泡沫结构。
2、在环氧树脂的真空发泡方法基础上,在搅拌过程引入吸收剂的添加,并改进了发泡容器以制得一定尺寸的多层平板泡沫材料。通过多层设计,获得了一种宽带吸波的环氧树脂吸波泡沫材料结构。利用真空发泡方法分层制备了该吸波泡沫材料,反射率测试表明其在3-18 GHz的宽带范围内具有15 dB以上的吸收,并且在2-3 GHz也具有8 dB以上的吸收。
本章工作验证了利用真空发泡方法制备环氧树脂吸波泡沫的可行性和优异性能,为该类材料的实际应用奠定了基础。通过本论文的研究,我们获得了一种无需溶剂、发泡剂和表面活性剂,只需树脂和固化剂的简单、经济、环保的环氧树脂发泡方法。这一方法的有效性和实用性通过一种宽带的环氧树脂吸波泡沫材料得到了验证,并可进一步推广到其它类型的泡沫材料制备中。
关键词:吸波泡沫,无发泡剂法,真空发泡,宽带吸波
Abstract
EM wave absorbing material is one kind of important materials in national defense industry and civil field, as an important branch of structural absorbing material, EM wave absorbing foam has excellent EM wave absorbing performance and higher specific strength which made it striking. But for now, most of the researching works on EM wave absorbing foam concentrate on the polyurethane which is difficult to meet the standard of use in some special situations that demand high strength and fire resistance ability. What`s more, the present foaming methods depend heavily on the physical or chemical foaming agent which created many troubles such like tedious process, environmental pollution and resource waste. In order to solute these problems we have selected epoxy resin to replace the polyurethane and developed a simple and non-additive method to realize foaming with vacuuming. The main content and results as follows:
1. Rely on the characters of the viscous liquid can produce bubbles by stirring and keep the state of bubbles stable for a long time, we introduce vacuum foaming process through researching the foaming effect of various parameters on the mixed system of epoxy resin and curing agent in detail. The effect of vacuum foaming parameters on the final formation of foam materials has also been studied in detail. At last we successes get the foaming technology which could be used to produce high quality foam with well-distribute bubbles and pores meanwhile we also get a better control of the foaming rate. More important is that we get rid of the foaming agent successfully. It was found that increasing the speed and time of mechanical agitation can improve the integration and uniformity of bubbles, but as time increases to a certain degree, under certain conditions, the bubble rate tends to a stable value. But with the introduce of vacuuming the foaming efficiency can be increased by lowering the pressure and increasing the temperature. The expansion of foam can be described by the equation as State of Ideal Gas. By controlling the above conditions, we can obtain the low, medium and high foaming rate of the epoxy resin foam whose foaming rate between 0 and 6 with well-distribute bubbles and pores. In addition ,we can also control the foam structure of foaming conditions (open pores or bubbles).
2. Based on the vacuum foaming method of epoxy resin foam we introduced the EM wave absorbing agent in mixing process to make a certain size multilayer flat foam material by change the size of foaming container. Through the multi-layer design, a kind of epoxy resin absorbing foam material structure with wide band wave absorbing is obtained. The absorbing foam material was prepared by using the method of vacuum foaming. The absorbing foam material prepared by the method of vacuum foaming has been tested, reflectivity test shows that it has more than 15 dB absorption in the 3-18 GHz broadband range and in the 2-3 GHz also has more than 8 dB absorption performance.
In this work, the feasibility and the excellent performance of the preparation of epoxy resin foam by the vacuum foaming method are verified, which laid a foundation for the practical application of this kind of material. In summarize, this paper design an original epoxy resin foam preparing method without the use of solvent, foaming agent and surface active agent, which only need epoxy resin and curing agent. The efficient and valuable of this preparing method has been verified by fabricating a wide band absorbing epoxy resin foam material, and it can also be further extended to other types of foam materials.
Key word: EM absorbing foam, without foaming agent, vacuum foaming, wide band absorption
目录
摘要 1
第一章 绪论 5
1.1吸波材料简介 5
1.2泡沫材料简介 6
1.3泡沫结构吸波材料的发展 6
1.4 当前泡沫材料存在的问题 7
1.4.1发泡剂的使用带来的问题 8
1.4.2聚氨酯泡沫使用的局限性 8
1.5 本文的研究内容、目的与意义 9
第二章 环氧泡沫材料的真空发泡方法 10
2.1 引言 10
2.2 实验部分 10
2.2.1实验原材料的选取和实验设备 10
2.2.2环氧树脂泡沫的制备 11
2.2.3 吸波泡沫制备的影响因素的探讨 12
2.3 发泡机理 16
2.3.1 搅拌过程 16
2.3.2 发泡过程 17
2.4 本章小结 18
第三章 吸波泡沫的设计、制备与性能 20
3.1引言 20
3.2吸波泡沫多层结构的设计理论 20
3.3吸波泡沫的制备工艺 21
3.4 样品吸波性能的测试结果与分析 22
3.5 本章小结 23
第四章 总结与展望 24
致谢 25
参考文献 26
第一章 绪论
1.1吸波材料简介
吸波材料是一类能将入射电磁波吸收并损耗掉的功能材料。传统的微波吸收材料通常是一种复合材料,主要由实现吸波功能的吸波剂与赋予其必要力学与加工性能的胶黏剂基体组成,二者的性质与复合对吸波材料综合性能的影响是该领域目前主要的研究方向。按照吸波剂的吸波机理可以将吸波材料分为磁损耗型和电损耗型两大类;按照其使用场合与方式的不同又可分为涂覆型和结构型吸波材料[1,2]。
其中涂覆吸波材料是一类具有极高韧性、吸附性与拉伸强度的吸波薄层,大多依靠喷涂的方式涂敷在飞机、导弹等装备表面实现减少装备雷达反射截面,降低自身特征信号的目的。结构吸波材料兼具微波吸收与载荷承载两项功能,可依靠玻璃纤维、芳纶纤维等实现对热固性树脂增韧或依靠玻纤板、碳纤板制成夹层结构来获取足够高的力学强度[3];由于其可设计的厚度相对于涂覆型材料来说有了很大提升,其组分、结构具有很强的可设计性,因而在扩展吸收带宽、提升吸收强度方面极具潜力。另外随着材料复合技术的高速发展,结构型吸波材料的制备手段也日臻完善,结构材料的应用水平得到了大幅的提升。结构型吸波材料依据其结构形式的不同又可以分为叠层型吸波材料、夹层结构吸波材料和吸波/承载复合结构。
在各种不同类型的结构件中,结构型吸波泡沫是一类使用范围广、使用量占比大的一类材料,进入21世纪以来,泡沫材料凭借其优异的力学性能、耐受环境性能、化学稳定性以及低介电常数、低密度等优点成为复合材料掺杂载体的理想选择,因此,含有特定功能掺杂剂的复合泡沫材料一度成为人们研究的热点,尤其是在电磁波的吸收与屏蔽领域,泡沫结构材料的应用更是屡见不鲜:在航空领域,隐身战机与导弹的许多结构部件均采用了吸波泡沫结构;地面装备如雷达天线仓、天线支架、转台等位置的吸波与屏蔽工作也是由泡沫结构担当的;在科研领域,进行电磁波性能测量的无回波暗室更是离不开吸波泡沫的参与[4]。近些年来,在民用领域,电磁污染也日益成为人们所重视的问题,复合泡沫结构良好的电磁波屏蔽与吸收性能使其在解决这一问题上倍受青睐。因此,可以说,伴随着电磁科学与技术长足发展,泡沫型吸波材料的研发与使用也将会持续增加。
1.2泡沫材料简介
泡沫是一种多孔结构,可以视作一种气体—实体复合材料。目前,人们已经陆续开发出了塑料泡沫、陶瓷泡沫、金属泡沫等结构,其中以塑料泡沫的工艺技术最为完善、应用与研究最为广泛,自1931年Munters和Tandberg发明聚苯乙烯泡沫以来,人们陆续开发了聚氨酯、聚乙烯、聚异氰尿酸酯、ABS、PVC、聚苯烯等一系列性能优异的泡沫材料。塑料泡沫材料种类繁多。按照其产品规格、加工手段、物化性质可以分为块状和薄膜泡沫、高密度和低密度泡沫、热塑性和热固性泡沫;按照结构形貌和力学性质又可以分为开孔和闭孔泡沫、软质和硬质泡沫。