登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 材料类 > 复合材料与工程 > 正文

LLZOPEO复合固体电解质材料的制备及其电化学性能毕业论文

 2021-03-30 20:33:10  

摘 要

本实验选取PEO(聚氧化乙烯)作为研究对象。PEO作为研究最早的,也是研究最为深入的电解质材料,大多用于制备全固态电解质。以PEO作为基体材料制备的电解质,有着电化学稳定性强、力学性能优越以及与正负极材料接触稳定等特点。但是,PEO在常温下有着比较高的结晶度,锂盐在其非晶区的溶解度也很低,不利于锂离子在电介质中的传输。因此,纯PEO固态电解质在常温下的离子电导率仅仅有10-7 S/cm以下。远远不能满足锂离子电池的需求。所以本文主要目的是对PEO进行改性,来提高固态电解质在常温下的离子电导率。本文通过向PEO中掺杂Li7La3Zr2O12无机陶瓷填料来提高固态电解质的电化学性。

实验与理论计算表明LLZO材料具有较高的锂离子电导率(10-4~10-3 S/cm),能与负极金属锂及大部分正极材料稳定接触,电化学稳定窗口高达6V,但是制备纯立方相Li7La3Zr2O12陶瓷薄膜的成本高昂、烧结困难。针对目前传统固相烧结法制备立方向LLZO存在的烧结温度高、烧结温度狭窄、烧结时间长等问题,本实验采用电场辅助烧结技术(FAST)来实现Li7La3Zr2O12的精确、快速烧结,通过增加烧结压力来制备高纯度高致密度的立方相Li7La3Zr2O12陶瓷粉体。

为了证明掺杂Li7La3Zr2O12对PEO材料的电化学性能的提高,我们制备了0-90wt% Li7La3Zr2O12含量的LLZO/PEO复合固态电解质,并使用XRD(X射线衍射)、SEM(扫描电子显微镜)、DSC(差示扫描量热法)来测试了样品的微观形貌与物相组成。采用电化学工作站对对固态电解质样品进行电化学测试比对。根据EIS(离子电导率测试)结果发现当LLZO含量为10wt%与50wt%LLZO时,所得到的固态电解质的离子电导率最高,可达到2×10-4S/cm;通过LSV(线性伏安扫描)测试,结果表明,当LLZO含量越高,复合电解质的电化学稳定窗口越高。综合各方面性质,当固态电解质中LLZO含量为50wt%时,电化学性能最为优良。

关键词:Li7La3Zr2O12,PEO,全固态电解质,电化学窗口,离子电导率

Abstract

In this study, PEO (Polyethylene oxide) was selected as the research object. PEO as the study of the earliest, but also the most in-depth study of electrolyte materials, mostly for the preparation of all solid electrolyte. The electrolyte prepared with PEO as the matrix material has the characteristics of strong electrochemical stability, excellent mechanical properties and stable contact with the positive and negative materials. However, PEO at room temperature has a relatively high degree of crystallinity, lithium salt in its amorphous area of ​​the solubility is very low, is not conducive to the transmission of lithium ions in the dielectric. Therefore, pure PEO solid electrolyte at room temperature, the ionic conductivity is only 10-7 S / cm below. Far from being able to meet the needs of lithium-ion battery. Therefore, the main purpose of this paper is to modify PEO to improve the ionic conductivity of solid electrolyte at room temperature. In this paper, the electrochemical properties of solid electrolyte are improved by doping Li7La3Zr2O12 inorganic ceramic filler into PEO.

 Experimental and theoretical calculations show that LLZO material has a high lithium ion conductivity (10-4 ~ 10-3S / cm), with the negative metal lithium and most of the cathode material in stable contact, electrochemical window up to 6V, but the preparation of pure The cubic Li7La3Zr2O12 ceramic film is expensive and has difficulty in sintering. In this paper, the electrochemical treatment of Li7La3Zr2O12 was carried out by using electric field assisted sintering (FAST). In this paper, the sintering temperature, sintering temperature, sintering temperature and sintering time were discussed. To prepare high purity and high density cubic phase Li7La3Zr2O12 ceramic powder.

In order to demonstrate the electrochemical performance of Li7La3Zr2O12 doped with PEO, the LLZO / PEO composite solid electrolyte with 0-90wt% Li7La3Zr2O12 content was prepared and characterized by XRD (X-ray diffraction), scanning electron microscopy (SEM) Differential scanning calorimetry) to test the microstructure and phase composition of the sample. Electrochemical test of solid electrolyte samples was carried out using electrochemical workstation. According to the results of EIS (ion conductivity test), it was found that when the LLZO content was 10 wt% and 50 wt% LLZO, the obtained solid electrolyte had the highest ionic conductivity of 2 × 10-4 S / cm. By LSV (linear voltammetry ) Test, the results show that when the higher the LLZO content, the higher the electrochemical stability of the composite electrolyte window. In all aspects, when the content of LLZO in solid electrolyte is 50wt%, the electrochemical performance is the best.

Key Words: Li7La3Zr2O12;PEO;All solid electrolyte;Electrochemical performance;Ion conductivity;Polyethylene oxide;

目 录

第1章 绪论 1

1.1 锂离子电池简介 1

1.2 锂离子电池固态电解质材料 3

1.2.1 锂离子电池电解质的要求 3

1.2.2 几种常用的电解质基体材料及其特点 4

1.2.3 PEO(聚氧化乙烯)电解质材料的性质与特点 5

1.3 锂镧锆氧(Li7La3Zr2O12)材料的研究进展 6

1.3.1结构与性能 6

1.3.2制备方法 7

1.4 研究目的及内容 8

1.4.1 研究目的及意义 8

1.4.2 研究内容 8

第2章 实验与测试方法 9

2.1 实验仪器与药品 9

2.1.1 实验仪器 9

2.1.2 实验药品 9

2.2 实验设计与工艺过程 10

2.3 测试方法及基本原理 14

2.3.1 X射线衍射分析(XRD) 14

2.3.2 扫描电镜分析(SEM) 14

2.3.3 示差扫描量热法(DSC)测试 14

2.3.4 电化学性能(EIS,LSV)测试 14

第3章 LLZO/PEO固体电解质的表征方法 15

3.1 LLZO/PEO固态电解质的微观结构分析 15

3.2 LLZO/PEO固态电解质的物相组成分析 20

3.3 LLZO/PEO固态电解质的DSC测试 22

第4章 LLZO/PEO固体电解质的电化学性能测试 23

4.1 LLZO/PEO固态电解质的离子电导率测试 23

4.2 LLZO/PEO固态电解质的电化学稳定窗口 28

第5章 全文总结 30

参考文献 30

致谢 32

绪论

1.1 锂离子电池简介

随着电化学科学的发展,锂电池早已从早期的一次锂原电池发展成为现在广泛使用的二次锂离子电池。锂原电池因为容易产生锂枝晶引起电池短路甚至发生爆炸早已不再使用,取而代之的是具有着高能量密度与更长循环性能的锂离子电池。锂离子电池也称二次锂电池,因其高能量密度与更长的循环寿命,在社会生活中有着很广阔的应用前景,例如电动交通工具、电能储存系统等中小型装置和运输工具中起到储存能源的作用。自1990年索尼公司制造出第一款商业化锂离子电池以来[1],锂离子电池因其能量密度高、使用寿命长、 环境友好等优点而广泛应用于移动电话、笔记本电脑、等便携式电子产品以及电动车等储能设备。

锂离子电池和其他电池的结构相似,有三个主要部分组成:正极、负极和电解质[2],充放电过程中锂离子通过电解质在两电极间转移。其工作原理如图1.1所示,在充电过程中,锂离子从正极材料中脱嵌出来通过电解液、隔膜进入到负极材料中,与此同时电子通过外电路从正极向负极迁移,放电过程则完全相反[4]。放电过程中电化学反应式为[3]

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图