多元玻璃熔化原理及其共烧匹配性研究毕业论文
2022-01-31 21:52:39
论文总字数:22328字
摘 要
21世纪,低温共烧陶瓷 (LTCC) 技术应运而生,已经成为新时代无源集成的主流技术。云计算、人工智能(AI)等科技成果都对电子元器件提出了更小、更轻、更薄、更快的要求。CaO-B2O3-SiO2 (CBS)微晶玻璃因其介电常数低、损耗小、拥有较低的烧结温度和不错的力学性能,满足了集成电路对基体材料信号传递速度要快、能够承载高集成度的电路、可靠性好等诸多方面的要求。
本论文以多元CBS微晶玻璃为主要研究对象,探索其熔化原理,以及硼含量变化,熔制时间变化对其结构、烧成性能和介电性能的影响。固定Ca/Si比值为0.61,调节B2O3含量,发现随着硼含量的增多,玻璃的透光性越来越差,其烧成温度由820℃升至920℃。经XRD分析,发现微晶玻璃中CaB2O4晶相的含量随着硼含量上升而变多,微晶玻璃的介电常数也因此而逐渐变大。当玻璃熔制时间从200min延长至300min时,微晶玻璃由乳白色失透态变成无色透明态。微晶玻璃的玻璃化转变温度Tg从683.3℃降到了665.1℃,析晶温度Tc1由844.1℃降至812.5℃,而且微晶玻璃的析晶能力得到了小幅度增强。而通过对CBS多元微晶玻璃的SEM和XRD图谱分析发现,在850℃下微晶玻璃与银电极共烧匹配性能良好。
关键词:低温共烧陶瓷 CBS微晶玻璃 玻璃熔制
Study on the Melting Principle and Co-firing Matching Property of Multi-component Glass
Abstract
In the 21st century, low temperature co-fired ceramics (LTCC) technology came into being, and it has become the mainstream technology for passive integration in the new era. The technological achievements such as cloud computing and artificial intelligence (AI) have all made smaller, lighter, thinner, and faster requirements for electronic components. CaO-B2O3-SiO2 (CBS) glass-ceramics have the advantages of low dielectric constant, low loss, low sintering temperature and good mechanical properties, satisfying the fast signal transmission speed of the integrated circuit to the matrix material and the ability to carry high integration. Degrees of circuit, reliability and many other requirements.
In this dissertation, multi-component CBS glass-ceramics is the main research object, and the melting principle, the change of boron content and the influence of the change of the melting time on the structure, firing properties and dielectric properties of the materials are investigated. The ratio of fixed Ca/Si was 0.61, and the content of B2O3 was adjusted. It was found that as the content of boron increased, the light transmission of the glass became worse and worse. The firing temperature increased from 820℃to 920℃. After XRD analysis, it was found that the content of CaB2O4 crystal phase in the glass-ceramics increased as the boron content increased, and the dielectric constant of the glass-ceramics also gradually increased. When the glass melting time is extended from 200 minutes to 300 minutes, the glass-ceramics change from milky white devitrification state to colorless and transparent state. The glass transition temperature Tg of the glass-ceramics dropped from 683.3℃ to 665.1℃, the devitrification temperature Tc1 decreased from 844.1℃to 812.5℃, and the crystallization capability of the glass-ceramics increased slightly. The analysis of SEM and XRD patterns of CBS multicrystal glass-ceramics show that the co-fired glass-ceramics and silver electrodes have good co-firing properties at 850℃.
Key Words: LTCC; CBS glass-ceramic;Glass-melting
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1引言 1
1.2 LTCC技术 1
1.2.1 LTCC技术简介 1
1.2.2 LTCC技术特点 2
1.2.3 LTCC工艺流程 3
1.2.4 LTCC技术的应用 5
1.3 钙硼硅系微晶玻璃 6
1.4 本论文研究内容 7
第二章 实验部分 8
2.1 实验原料及设备 8
2.2 实验内容 9
2.2.1 玻璃瓷粉的制备 9
2.2.2 流延成型 10
2.2.3 试样烧成 11
2.3 试样的测试与分析 11
2.3.1 CBS微晶玻璃中B2O3含量测定 11
2.3.2 微晶玻璃性能的测试 12
第三章 结果与讨论 14
3.1 多元微晶玻璃的熔化原理 14
3.2 硼含量对于CBS微晶玻璃性能的影响 14
3.2.1 硼含量对于CBS微晶玻璃形态的影响 15
3.2.2 硼含量对于CBS微晶玻璃烧成性能的影响 17
3.2.3 硼含量对于CBS微晶玻璃介电性能的影响 18
3.3不同熔制时间对CBS多元玻璃性能的影响 19
3.4 多元玻璃共烧匹配性能研究 21
第四章 结论 23
参考文献 24
致 谢 26
第一章 绪论
1.1引言
自工业革命解放人类的双手以来,社会生产力迅速增长,近几十年来又兴起了信息技术革命,更是潜移默化却大刀阔斧般在改变我们的生活。当前,国内的手机运营商网络服务都已进入4G 时代,而5G在今年下半年似乎触手可及。未来的世界将会进入万物互联时代,新时代的电子产品将会日新月异。在移动通信领域,随着各种电子产品百花齐放般出现,新的电子产品不断地向数字化、智能化、高频化发展,这更加意味着集成电路的电子元器件今后的研究方向是小型化与集成化并存。与之相应,集成电路芯片[1]必然需要布线细微、每层芯片轻薄化,从而尽可能的提升其集成度,而这也对封装材料提出了更高的要求。
多芯片封装技术(MCM)可以大幅度提升高集成IC芯片的性能施展空间,制造高频环境下性能优良的电子器件系统,有助于实现器件小型化与高性能化的统一。1982年,美国Hughes公司提出并成功应用了低温共烧陶瓷技术[2](LTCC),LTCC技术是众多微组装方案中,发展程度最高、最有效的一种。
请支付后下载全文,论文总字数:22328字