登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 复合材料与工程 > 正文

Nb2O5掺杂0.77Bi0.5Na0.5TiO3-0.23SrTiO3 基低电场大应变陶瓷的性能研究任务书

 2020-04-18 19:41:32  

1. 毕业设计(论文)的内容和要求

毕业论文内容: 课程论文是对大学四年级学习情况以及对所做的课题情况的真实反映,其内容应该包括以下方面: 1. 查阅、搜集与本课题相关的书籍和文献资料,熟悉、了解无铅压电陶瓷材料的应用状况和常用的制备方法。

2. 掌握传统固相法合成bnt-23st无铅压电陶瓷材料的制备工艺,并分析讨论改变nb5o2的掺杂量对合成bnt-st无铅压电陶瓷材料的物相、形貌及尺寸的影响,并测试其应变性能。

最后,在这些基础上要总结实验操作经验及注意事项,并按要求完成毕业论文的全部内容。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

参考文献 [1] Wangfeng Bai, Lingyu Li et al. Phase Diagrams and Electromechanical Strains in Lead-Free BNT-Based Ternary Perovskite Compounds [J]. Journal of the American Ceramic Society ,2014, 3510~3518 [2] Malik R A, Hussain A, Zaman A, et al. Structure#8211;property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3#8211;SrTiO3 incipient piezoceramics[J]. RSC Adv. 2015, 5(117):10.1039.C5RA19107F. [3] MALIK R A, KANG J K, HUSSAIN A, et al. High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3-SrTiO3 incipient piezoelectric ceramics [J]. Appl Phys Express, 2014, 7(6): 061502. [4] Feifei W., Min X., Yanxue T, et al. Large Strain Response in the Ternary Bi0.5Na0.5TiO3#8211;BaTiO3#8211;SrTiO3 Solid Solutions [J]. Journal of American Ceramic Society, 2012, 95(6), 1955~1959 [5] Feifei W., Chung Ming L. et al. Composition induced structure evolution and large strain response in ternary Bi0.5Na0.5TiO3- Bi0.5K0.5TiO3-SrTiO3 solid solution [J]. Journal of Applied Physics, 2013, 114 [6] Van-Quyet Nguyen, Hyoung-Su Han et al. Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta [J]. Journal of Alloys and Compounds, 2012, 511, 237~241 [7] RizwanAhmedMalik, AliHussain et al. Structural transition and giant strain induced by Aand B-site concurrent donor doping in Bi0.5(Na0.84K0.16)0.5TiO3#8211; SrTiO3 ceramics [J]. Materials Letters, 2015, 143: 148~150. [8] Amir Ullah et al. Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics [J]. Journal of the European Ceramic Society, 2014, 34: 29~35 [9]Ji S H, Cho J H, Paik J H, et al. Poling effects on the performance of a lead-free piezoelectric nanofiber in a structural health monitoring sensor[J]. Sensors Actuators A Physical, 2017, 263. [10]Cho J H, Park J S, Kim S W, et al. Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3-0.23SrTiO3, ceramics[J]. Journal of the European Ceramic Society, 2017, 37(10):3313-3318. [11]Sangwook Kim, Haein Choi, Sungjin Han, et al. A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)(Bi0.5Na0.5)TiO3 #8211; xSrTiO3, piezoelectrics[J]. Journal of the European Ceramic Society, 2016, 37(4). [12]Li F, Zhai J, Shen B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics[J]. Journal of Applied Physics, 2017, 121(5):054103. [13]Saleem M, Kim M S, Kim I S, et al. Polarization and strain behaviors of 0.74BiNaTiO 3 #8211;0.26SrTiO 3 /Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3, ceramic composite[J]. Ceramics International, 2016, 42(12):13960-13968. [14]Ji S H, Cho J H, Jeong Y H, et al. Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications[J]. Sensors Actuators A Physical, 2016, 247:316-322. [15]Yang K S, Choi M J, Choi J S, et al. Lead-free 0.75(Bi 0.5 Na 0.5 )TiO 3 -0.25SrTiO 3, (BNT-ST) epitaxial films grown on Si (001) substrates via pulsed laser deposition[J]. Sensors Actuators A Physical, 2016, 243:117-122. [16]Sao R, Vats G, Vaish R. A Prime Lead-Free Ferroelectric Ceramic for Thermal Energy Harvesting: 0.88Bi0.5Na0.5TiO3-.02SrTiO3-0.1Bi0.5Li0.5TiO3[J]. Ferroelectrics, 2015, 474(1):1-7. [17]Liu, Laijun, Shi, Danping, Knapp, Michael, et al. Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3-SrTiO3-(K0.5Na0.5)NbO3 solid solutions[J]. Journal of Applied Physics, 2014, 116(18):1153.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2017.12~2018.1 阅读相关文献及资料,了解课题的基本知识及相关背景 2019.1~2019.2 完成外文翻译,对已阅读的文献材料,进行总结,完成开题报告 2019.2~2019.4 进行相关实验内容,并对实验的结果进行分析讨论 2019.4~2019.5 对实验结果进行分析总结,撰写毕业论文 2019.5~2019.6 修改毕业论文及进行毕业答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图