登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 高分子材料与工程 > 正文

不同抗冲改性剂增韧改性PVC树脂性能的研究任务书

 2020-06-28 20:20:55  

1. 毕业设计(论文)的内容和要求

主要内容包括:本课题的目的在于探索常用的几种抗冲改性剂对pvc树脂增韧效果的差异。

pvc具有良好的耐腐蚀性、难燃性,较小的热导率以及极佳的绝缘性,可广泛用于建材、管材、薄膜和绝缘材料等。

但是pvc质硬而脆,其应用受到一定限制,因此我们要提高它的韧性来符合实际应用要求。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] J. Yin, R. Chang, Y. Shui, X. Zhao, Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions, Soft Matter 9 (2013) 7468#8211;7478. [2] W. Gao, Y. Zheng, J. Shen, S. Guo, Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles, ACS Appl. Mater. Interfaces 7 (2015) 1541#8211;1549. [3] Y. Zhang, L. Wang, Y. Xu, ZrO2 solid superacid porous shell/void/TiO2 core particles (ZVT)/polyvinylidene fluoride (PVDF) composite membranes with anti-fouling performance for sewage treatment, Chem. Eng. J. 260 (2015) 258#8211;268. [4] A. Susanna, L. Armelao, E. Callone, S. Dir#232;, M. D#8217;Arienzo, B. Di Credico, L. Giannini, T. Hanel, F. Morazzoni, R. Scotti, ZnO nanoparticles anchored to silica filler. A curing accelerator for isoprene rubber composites, Chem. Eng. J. 275 (2015) 245#8211;252. [5] A.A. Vasileiou, M. Kontopoulou, H. Gui, A. Docoslis, Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites, ACS Appl. Mater. Interfaces 7 (2015) 1624#8211;1631. [6] H.R. Pant, P. Pokharel, M.K. Joshi, S. Adhikari, H.J. Kim, C.H. Park, C.S. Kim, Processing and characterization of electrospun graphene oxide/polyurethane composite nanofibers for stent coating, Chem. Eng. J. 270 (2015) 336#8211;342. [7] M.-C. Li, X. Deng, U.-R. Cho, Study on the structure, thermal properties, and mechanical properties of PMMA-grafted SBR/clay nanocomposites, J. Compos. Mater. 44 (2010) 1279#8211;1288. [8] S. Varanasi, Z.-X. Low, W. Batchelor, Cellulose nanofibre composite membranes #8211; biodegradable and recyclable UF membranes, Chem. Eng. J. 265 (2015) 138#8211; 146. [9] J. Sapkota, M. Jorfi, C. Weder, E.J. Foster, Reinforcing poly(ethylene) with cellulose nanocrystals, Macromol. Rapid Commun. 35 (2014) 1747#8211;1753. [10] Q. Sun, A. Mandalika, T. Elder, S.S. Nair, X. Meng, F. Huang, A.J. Ragauskas, Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix, Green Chem. 16 (2014) 3458#8211;3462. [11] Y. Pan, M.Z. Wang, H. Xiao, Biocomposites containing cellulose fibers treated with nanosized elastomeric latex for enhancing impact strength, Compos. Sci. Technol. 77 (2013) 81#8211;86. [12] M.Q. Zhang, M.Z. Rong, H.B. Zhang, K. Friedrich, Mechanical properties of low nano-silica filled high density polyethylene composites, Polym. Eng. Sci. 43 (2003) 490#8211;500. [13] Z. Zhang, X. Zhao, J. Zhang, S. Chen, Effect of nano-particles-induced phase inversion on largely improved impact toughness of PVC/a-methylstyreneacrylonitrile copolymer (a-MSAN)/CPE-matrix composites, Compos. Sci. Technol. 86 (2013) 122#8211;128. [14] Z. Zhang, S. Chen, J. Zhang, Improvement in the heat resistance of poly(vinyl chloride) profile with styrenic polymers, J. Vinyl Additive Technol. 17 (2011) 85#8211;91. [15] Z. Zhang, B. Li, S. Chen, J. Zhang, X. Jin, Poly(vinyl chloride)/poly(amethylstyrene- acrylonitrile)/acrylic resin ternary blends with enhanced toughness and heat resistance, Polym. Adv. Technol. 23 (2012) 336#8211;342. [16] Z. Zhang, J. Zhang, H. Liu, High-impact toughness poly(vinyl chloride)/(amethylstyrene)- acrylonitrile-butadiene-styrene copolymer/acrylic resin blends: thermal properties and toughening mechanism, J. Vinyl Additive Technol. (2014). [17] H. Liu, W. Song, F. Chen, L. Guo, J. Zhang, Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends, Macromolecules 44 (2011) 1513#8211;1522. [18] J.J. La Scala, J.A. Orlicki, C. Winston, E.J. Robinette, J.M. Sands, G.R. Palmese, The use of bimodal blends of vinyl ester monomers to improve resin processing and toughen polymer properties, Polymer 46 (2005) 2908#8211;2921. [19] B. Yin, L.-P. Li, Y. Zhou, L. Gong, M.-B. Yang, B.-H. Xie, Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core#8211;shell particles formed in melt processing on preventing micro-crack propagation, Polymer 54 (2013) 1938#8211;1947. [20] Z. Zhang, X. Zhao, S. Wang, J. Zhang, W. Zhang, Inducing a network structure of rubber phase: an effective approach to toughen polymer without sacrificing stiffness, RSC Adv. 4 (2014) 60617#8211;60625.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2.20-3.5 文献查询及文献翻译 3.6-3.12 完成开题报告并开题 3.13-4.16 进行实验工作 4.17-4.23 毕业设计中期检查 4.24-6.4 继续实施实验并撰写论文 6.5-6.18 论文答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图