基于可逆共价键制备多相结构自修复聚合物材料任务书
2020-04-23 20:13:39
1. 毕业设计(论文)的内容和要求
1:毕业论文内容: 本课题选用聚氨酯与环氧树脂两种常见的高分子材料,通过在聚氨酯与环氧树脂分子链间引入可逆共价键,在增强两相相互作用提过材料相容性与力学性能的同时还赋予了材料自修复的性能,相较与单一相聚合物自修复的研究现状,多相自修复聚合物的研究具有更加广阔的研究应用前景,因而此课题具有极大的研究价值。
2: 毕业论文的要求: A) 掌握聚氨酯、环氧树脂材料的合成工艺 B) 掌握聚氨酯/环氧树脂共混物的制备工艺 C) 熟知实验操作流程 D) 熟练操作相关性能测试仪器 E) 培养良好的数据分析与统计能力 具体要求如下: 1. 查阅相关文献不少于 15篇 2. 翻译一篇外文文献(不少于3000汉字) 3. 在此基础上,完成开题报告 4. 根据实验开题报告,进行实验工作 5. 总结实验结果 6. 撰写论文
2. 参考文献
[1] Amendola V, Meneghetti M. Self-healing at the nanoscale[J]. Nanoscale, 2009, 1(1): 74-88. [2] Meng L M, Yuan Y C, Rong M Z, et al. A dual mechanism single-component self-healing strategy for polymers[J]. Journal of Materials Chemistry, 2010, 20(29). [3] Blaiszik B J, Kramer S L B, Olugebefola S C, et al. Self-Healing Polymers and Composites[J]. Annual Review of Materials Research, 2010, 40(1): 179-211. [4] Diesendruck C E, Sottos N R, Moore J S, et al. Biomimetic Self-Healing[J]. Angew Chem Int Ed Engl, 2015, 54(36): 10428-47. [5] An S Y, Arunbabu D, Noh S M, et al. Recent strategies to develop self-healable crosslinked polymeric networks[J]. Chem Commun (Camb), 2015, 51(66): 13058-70. [6] Palleau E, Reece S, Desai S C, et al. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics[J]. Adv Mater, 2013, 25(11): 1589-92. [7] Li W, Jiang Z, Yang Z, et al. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption[J]. PLoS One, 2013, 8(11): e81616. [8] Rule J D, Brown E N, Sottos N R, et al. Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials[J]. Advanced Materials, 2005, 17(2): 205-208. [9] Van Tittelboom K, De Belie N, Van Loo D, et al. Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent[J]. Cement and Concrete Composites, 2011, 33(4): 497-505. [10] Wei H, Wang Y, Guo J, et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings[J]. Journal of Materials Chemistry A, 2015, 3(2): 469-480. [11] Hansen C J, Wu W, Toohey K S, et al. Self-Healing Materials with Interpenetrating Microvascular Networks[J]. Advanced Materials, 2009, 21(41): 4143-4147. [12] Deng G, Li F, Yu H, et al. Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol#8211;Gel Transitions[J]. ACS Macro Letters, 2012, 1(2): 275-279. [13] Yao Y, Wang J, Lu H, et al. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties[J]. Smart Materials and Structures, 2016, 25(1). [14] Yan X, Liu Z, Zhang Q, et al. Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes[J]. J Am Chem Soc, 2018, 140(15): 5280-5289. [15] Habault D, Zhang H, Zhao Y. Light-triggered self-healing and shape-memory polymers[J]. Chem Soc Rev, 2013, 42(17): 7244-56. [16] Scheiner M, Dickens T J, Okoli O. Progress towards self-healing polymers for composite structural applications[J]. Polymer, 2016, 83: 260-282. [17] Kim S M, Jeon H, Shin S H, et al. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers[J]. Adv Mater, 2018, 30(1). [18] Tian Q, Yuan Y C, Rong M Z, et al. A thermally remendable epoxy resin[J]. Journal of Materials Chemistry, 2009, 19(9). [19] Tian Q, Rong M Z, Zhang M Q, et al. Synthesis and characterization of epoxy with improved thermal remendability based on Diels-Alder reaction[J]. Polymer International, 2010, 59(10): 1339-1345. [20] Tian Q, Rong M Z, Zhang M Q, et al. Optimization of thermal remendability of epoxy via blending[J]. Polymer, 2010, 51(8): 1779-1785. [21] Peterson A M, Jensen R E, Palmese G R. Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction[J]. ACS Appl Mater Interfaces, 2010, 2(4): 1141-9. [22] Peterson A M, Jensen R E, Palmese G R. Thermoreversible and remendable glass#8211;polymer interface for fiber-reinforced composites[J]. Composites Science and Technology, 2011, 71(5): 586-592. [23] Peterson A M, Kotthapalli H, Rahmathullah M a M, et al. Investigation of interpenetrating polymer networks for self-healing applications[J]. Composites Science and Technology, 2012, 72(2): 330-336. [24] Canadell J, Goossens H, Klumperman B. Self-Healing Materials Based on Disulfide Links[J]. Macromolecules, 2011, 44(8): 2536-2541.
3. 毕业设计(论文)进程安排
2019.01.10-2019.01.18 文献查阅,了解课题,英文文献翻译 2019.01.19-2019.02.24 撰写开题报告 2019.02.25-2019.04.05 按照实验计划进行实验 2019.04.07-2019.04.28 实验并进行中期检查 2019.05.02-2019.06.02 进行实验并撰写完成毕业论文 2019.06.03-2019.06.14. 毕业论文答辩
您可能感兴趣的文章
- 可聚合高分子模板增强制备高耐久超疏水涂层文献综述
- PVC/ABS合金的制备及性能研究开题报告
- 设计具有增强的赝电容及电催化性能的Co3O4/NiCo2O4双壳纳米笼结构外文翻译资料
- 光子上转换手性液晶:显著放大的上转换圆偏振发光外文翻译资料
- 氧空位型LiV3O8纳米片的快速稳定储锂性能研究外文翻译资料
- 应用于高性能钙钛矿太阳能电池的电子传输层的前体工程外文翻译资料
- 复合材料科学与技术 ——含碳纳米管的多孔导电弹性体复合材料悬浮在共连续聚合物的狭窄孔隙中的混合纳米复合材料外文翻译资料
- 一种用于先进锂硫电池源自聚罗丹宁纤维素的氮硫双掺杂碳外文翻译资料
- 短玻璃纤维增强聚丙烯控制界面和力学性能参数外文翻译资料
- 含Ca0的LaCO.0H纳米齿轮及其发光和脱NOx性能外文翻译资料