聚合物改性聚丙烯隔膜锂硫电池制备及其电化学性能研究任务书
2020-06-29 20:29:13
1. 毕业设计(论文)的内容和要求
随着能源危机和环境污染的不断加剧,具有高理论比容量(1672 mah﹒g-1 )和高能量密度(2600wh kg-1)的锂硫电池备受关注。
相比于传统的锂离子电池,该体系的优点如下: (1)由于单质硫的资源丰富,故而锂-硫电池成本会比较低;(2)硫元素在常温下无毒,对于环境友好;(3)锂-硫电池有很宽的使用温度范围;(4)锂-硫电池具有长循环寿命的潜力。
但要实现锂硫电池的商业化,还要克服很多挑战:(1) 单质硫为电子绝缘体(5#215;10#8722;30 s/cm,25℃) (2) 单质硫向放电产物li2s 转化过程中有高达80%的体积膨胀(3) 臭名昭著的”穿梭效应”(4)阳极锂枝晶的形成。
2. 参考文献
1. Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S., Rechargeable lithium-sulfur batteries. Chemical reviews 2014, 114 (23), 11751-87. 2. Li, G.-C.; Li, G.-R.; Ye, S.-H.; Gao, X.-P., A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries. Advanced Energy Materials 2012, 2 (10), 1238-1245. 3. Xu, G.; Yan, Q.-b.; Wang, S.; Kushima, A.; Bai, P.; Liu, K.; Zhang, X.; Tang, Z.; Li, J, A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chemical Science 2017, 8 (9), 6619-6625. 4. Xiang, Y.; Li, J.; Lei, J.; Liu, D.; Xie, Z.; Qu, D.; Li, K.; Deng, T.; Tang, H., Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. ChemSusChem 2016, 9 (21), 3023-3039. 5. Deng, N.; Kang, W.; Liu, Y.; Ju, J.; Wu, D.; Li, L.; Hassan, B. S.; Cheng, B., A review on separators for lithium sulfur battery: Progress and prospects. J. Power Sources 2016, 331, 132-155; 6. Qian, W.; Gao, Q.; Zhang, H.; Tian, W.; Li, Z.; Tan, Y., Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta 2017, 235, 32-41; 7. Ma, G.; Wen, Z.; Jin, J.; Lu, Y.; Rui, K.; Wu, X.; Wu, M.; Zhang, J., Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J. Power Sources 2014, 254, 353-359; 8. Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Peng, P.; Jin, J.; Wu, X., Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J. Power Sources 2015, 273, 511-516; 9. Zhu, J.; Chen, C.; Lu, Y.; Zang, J.; Jiang, M.; Kim, D.; Zhang, X., Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium#8211;sulfur batteries. Carbon 2016, 101, 272-280. 10. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y., Improved lithium#8211;sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode#8211;separator interface. Energy Environ. Sci. 2014, 7 (10), 3381-3390. 11. Xiao, P.; Bu, F.; Yang, G.; Zhang, Y.; Xu, Y., Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium-Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices. Advanced materials 2017, 29 (40). 12. Freitag, A.; Langklotz, U.; Rost, A.; Stamm, M.; Ionov, L., Ionically conductive polymer/ceramic separator for lithium-sulfur batteries. Energy Storage Materials 2017, 9, 105-111. 13. Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q., Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium-Sulfur Batteries. Advanced science 2016, 3 (1), 1500268. 14. Rao, J.; Xu, R.; Zhou, T.; Zhang, D.; Zhang, C., Rational design of self-supporting graphene - Polypyrrole/sulfur - Graphene sandwich as structural paper electrode for lithium sulfur batteries. Journal of Alloys and Compounds 2017, 728, 376-382. 15. Zhao, X.; Ahn, H.-J.; Kim, K.-W.; Cho, K.-K.; Ahn, J.-H., Polyaniline-Coated Mesoporous Carbon/Sulfur Composites for Advanced Lithium Sulfur Batteries. The Journal of Physical Chemistry C. 16. Bu, Y.; Wu, J.; Zhao, X.; Ding, K.; Liu, Q.; Huang, Y.; Lv, J.; Wang, Y., Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium#8211;sulfur batteries. RSC Advances 2016, 6 (106), 104591-104596.
3. 毕业设计(论文)进程安排
12.22-1.13 查阅文献,翻译英文文献,开题 3.13-4.28 实验 4.28-5.12 论文中期检查 5.12-5.28 实验总结 5.28-6.9 撰写论文及论文答辩
您可能感兴趣的文章
- 元素对Ti-xAl-yMo-zV和Ti-xAl-yMo-zCr β-Ti合金应变速 率敏感性的影响外文翻译资料
- 复合工艺提高先进钠离子电池的电位窗口外文翻译资料
- 氧化还原催化辅助下的高稳定钒氧化还原流电池外文翻译资料
- 用于高压可伸缩储能的电解锌锰电池外文翻译资料
- 表面活性剂改性疏水性Cu2O量子点作为高效钙钛矿太阳能电池顶部空穴传输材料外文翻译资料
- Nb 和 Ni 共掺杂 Mg(0001)氢解离扩散的理论研究:外文翻译资料
- 低温固相法制备锂离子电池正极材料LiFeSO4F毕业论文
- 锂空气电池新型正极催化剂Gd2Zr2O7的制备与性能研究毕业论文
- 酸类添加剂对beta”-Al2O3电泳沉积成型法的影响毕业论文
- CuZr非晶合金中短程有序结构及其与玻璃形成能力的关系研究毕业论文