富硫聚合物及其衍生物制备及其性能研究任务书
2020-06-29 20:29:21
1. 毕业设计(论文)的内容和要求
在当今全球性能源紧缺的大背景下,锂离子电池的发展情况是研究领域的热点问题,锂-硫电池的研究又是其热门分支。
虽然锂-硫电池有很多优势,例如硫元素廉价丰富,电池理论容量高,但是我们也无法忽略锂-硫电池的劣势,它的劣势在于硫元素导电性不强,同时在充放电过程中多硫化物容易在电介质中溶解而造成质量损失。
针对这一问题,本课题以富硫聚合物及其衍生物与硫元素复合为突破口,通过化学键的”固定”硫元素,抑制多硫化物的穿梭,达到提高锂-硫电池的循环性能目的。
2. 参考文献
[1] 吴宇平, 万春荣, 姜长印. 锂离子二次电池 [M]. 北京: 化学工业出版社, 2002. [2] Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature. 2001, 414(6861): 359-367. [3] 何曼君,陈维孝,董西侠. 高分子物理[M]. 上海:复旦大学出版社, 1990 [4] M. Armand, J. M. Tarascon. Building better batteries [J], Nature, 2008, 451, 652. [5] Mentbayeva A, Belgibayeva A, Umirov N, et al. High Performance Freestanding Composite Cathode for Lithium-Sulfur Batteries[J]. Electrochimica Acta. 2016, 217: 242-248. [6] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S Batteries with High Energy Storage[J]. Nature Materials. 2012, 11(1): 19-29. [7] Kang W, Deng N, Ju J, et al. A Review of Recent Developments in Rechargeable Lithium-Sulfur Batteries.[J]. Nanoscale. 2016, 8(37). [8] Mikhaylik Y V, Akridge J R. Polysulfide Shuttle Study in The Li/S Battery System[J]. Journal of the Electrochemical Society. 2004, 151(11): A1969-A1976. [9] Ji X, Nazar L F. Advances in Li-S Batteries[J]. Journal of Materials Chemistry. 2010, 20(44): 9821-9826. [10] Ji X, Lee K T, Nazar L F. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries[J]. Nature Materials. 2009, 8(6): 500-506. [11] Xie Q X, Zheng A R, Xie C, et al. Graphene Functionalized Attapulgite/Sulfur Composite as Cathode of Lithium-Sulfur Batteries for Energy Storage[J]. Microporous and Mesoporous Materials. 2016, 224: 239-244. [12] Guo W X, Zhang F, Lin C J, et al. Direct Growth of of TiO2 Nanosheet Arrays on Carbon Fibers for Efficient Photocatalytic Degradation of Methyl Orange[J]. Advanced Materials. 2012, 24: 4761-4764. [13] Lee G H, Lee J W, Choi J I, et al. Ultrafast Discharge/Charge Rate and Robust Cycle Life for High-Performance Energy Storage Using Ultrafine Nanocrystals on the Binder-Free Porous Graphene Foam[J]. Advanced Functional Materials. 2016, 26: 5139-5148l. [14] You B, Jiang N, Sheng M, et al. Bimetal-Organic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction[J]. ACS Catalysis. 2015, 5: 7068-7076. [15] Chen Y Z, Wang C M, Wu Z Y, et al. From Bimetallic Metal-Organic Framwork to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Advanced Materials. 2015, 27: 5010-5016.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 12.22-1.12 查阅文献,翻译英文文献,开题 3.13-4.28 实验 4.28-5.12 论文中期检查 5.12-5.28 实验总结 5.28-6.5 撰写论文及论文答辩
您可能感兴趣的文章
- 元素对Ti-xAl-yMo-zV和Ti-xAl-yMo-zCr β-Ti合金应变速 率敏感性的影响外文翻译资料
- 复合工艺提高先进钠离子电池的电位窗口外文翻译资料
- 氧化还原催化辅助下的高稳定钒氧化还原流电池外文翻译资料
- 用于高压可伸缩储能的电解锌锰电池外文翻译资料
- 表面活性剂改性疏水性Cu2O量子点作为高效钙钛矿太阳能电池顶部空穴传输材料外文翻译资料
- Nb 和 Ni 共掺杂 Mg(0001)氢解离扩散的理论研究:外文翻译资料
- 低温固相法制备锂离子电池正极材料LiFeSO4F毕业论文
- 锂空气电池新型正极催化剂Gd2Zr2O7的制备与性能研究毕业论文
- 酸类添加剂对beta”-Al2O3电泳沉积成型法的影响毕业论文
- CuZr非晶合金中短程有序结构及其与玻璃形成能力的关系研究毕业论文