Li6.5La3Zr1.3Nb0.6Gd0.1O12电解质的流延制备任务书
2020-04-17 20:28:12
1. 毕业设计(论文)的内容和要求
1、内容: 目前商业锂离子电池采用的是溶解有锂盐的有机溶剂电解液,存在易燃烧、电化学稳定性差、工作温度范围窄、易泄露、有毒等缺点,因此固态陶瓷锂离子电解质被认为是未来锂离子电池应用发展的新方向。
石榴石结构的锂离子固体电解质具有三维锂离子传输通道、电化学窗口宽(6v vs. li/li )、对熔融金属锂稳定的特点,因而在无机固态电解质研究中备受关注。
本论文以经过掺杂改性的li7la3zr2o12(llzo)体系材料li6.5la3zr1.3nb0.6gd0.1o12为电解质,通过流延工艺制备致密的电解质薄片,探索实用化的制备工艺。
2. 参考文献
[1] Kun Fu, Yunhui Gong, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries [J]. Energy Environ. Sci., 2017, 10, 1568-1575. [2] Gregory T. Hitz, Dennis W. McOwen, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture [J]. Materials Today. 2018, 22, 1369-7021. [3] Yu Tang, Zhiwei Luo, Taoyong Liu, Piao Liu, Zhuo Li, Anxian Lu. Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid electrolyte [J]. Ceramics International 2017, (43) 11879-11884. [4] C. Deviannapoorani, Lakshmi S. Shankar, S. Ramakumar, Ramaswamy Murugan. Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12 [J]. Ionics 2016, (22): 1281-1289. [5] John Christopher Bachman, Sokseiha Muy, Alexis Grimaud et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J]. Chem. Rev. 2016, (116): 140-162. [6] Xiaoting Liu, Yuan Li, Tiantian Yang et al. High lithium ionic conductivity in the garnet-type oxide Li7-2xLa3Zr2-xMoxO12 (x=0-0.3) ceramics by sol-gel method [J]. Journal of the American Ceramics Society. 2017, (100): 1527-1533. [7] Ramaswamy Murugan, Venkataraman Thangadurai, Werner Weppner. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12 [J]. Angew. Chem. Int. Ed. 2007, (46) 7778-7781. [8] Reinhard Wagner, G#252;nther J. Redhammer, Daniel Rettenwander et al. Crystal Structure of Garnet-Related Li-Ion Conductor Li7-3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification [J]. Chem. Mater. 2016, (28): 1861-1871. [9] Dawei Wang, Guiming Zhong, Wei Kong Pang et al. Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites [J]. Chem. Mater. 2015, (27): 6650-6659. [10] Lincoln J. Miara, William Davidson Richards, Yan E. Wang, Gerbrand Ceder. First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets [J]. Chem. Mater. 2015, (27): 4040-4047. [11] Travis Thompson, Jeff Wolfenstine et al. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO) [J]. J. Mater. Chem. A. 2014, (2). 13431-13436. [12] John B. Goodenough, Youngsik Kim. Challenges for Rechargeable Li Batteries [J]. Chemical of Materials. 2010, (22). 587-603. [13] Y.X. Gao, X.P. Wang, H. Lu, L.C. Zhang, L. Ma, Q.F. Fang. Mechanismof lithiumion diffusion in the hexad substituted Li7La3Zr2O12 solid electrolytes [J]. Solid State Ionics. 2016, (291) 1 ~7. [14] Daniel Rettenwander, Andreas Welzl, et al. Synthesis, Crystal Chemistry, and Electrochemical Properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr4 by Mo6 [J]. Inorganic Chemistry. 2015, (54). 10440-10449.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2月25日 ~3月3日 确定课题,布置任务,阅读文献资料,并进一步检索文献。
3月4日 ~3月17日 翻译英文文献,完成开题报告;制订实验计划,了解实验仪器设备及实验方法。
3月18日 ~ 3月24日 修改开题报告及英文文献翻译,进行开题,根据意见完善实验计划。
您可能感兴趣的文章
- 蒸养纤维掺杂高铁低钙水泥混凝土的抗海水冲磨性能研究文献综述
- TIPA对水泥-锂渣体系力学性能和水化性能的影响外文翻译资料
- TEA对锂渣-水泥复合粘结剂流变性能及水化性能的影响外文翻译资料
- 硫酸铝无碱液体促进剂的效果研究烷醇胺对硅酸盐水泥水化过程的影响外文翻译资料
- 新型C-A-S-H/PCE纳米复合材料:设计表征和对水泥水化的影响外文翻译资料
- 工业中碳捕获技术以及以水泥回转窑作为核心的吸附再生器外文翻译资料
- Ca/Al层状双氢氧化物的制备及其结构对水泥早期强度的影响外文翻译资料
- 蒸汽养护后混凝土养护方法对混凝土机械强度和透气性的影响外文翻译资料
- 含白云石或石灰石的偏高岭土水泥在相组成与抗压强度的异同外文翻译资料
- 与硅质铁尾矿结合的混凝土的耐久性外文翻译资料