La系元素掺杂对石榴石型固态电解质结构及性能的影响任务书
2020-04-17 20:28:18
1. 毕业设计(论文)的内容和要求
1、内容: 传统商业化锂离子电池采用有机电解液,存在着易燃、易爆、易挥发等严重的安全隐患,制约了锂离子电池的发展。
采用固态电解质替代液态电解质开发全固态锂离子电池对于解决锂离子电池安全问题有着重要意义。
无机全固态电池采用无机物作为固态电解质,其具有锂离子电导率高、热稳定好、安全性能极高等优点。
2. 参考文献
[1] FAN H, ZHOU D, FAN L, et al. Development on In-situ Synthesis of Gel Polymer Electrolyte for Lithium Batteries [J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 134-9. [2] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films [J]. Solid State Ionics, 1992, 53(92): 47-54. [3] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries [J]. Journal of Power Sources, 1992, 43(s 1-3): 103-10. [4] RANGASAMY E, WOLFENSTINE J, ALLEN J, et al. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte [J]. Journal of Power Sources, 2013, 230(230): 261-6. [5] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie, 2010, 38(50). [6] XISHU WANG, JIE LIU, RUI YIN, et al. High lithium ionic conductivity of garnet-type oxide Li7 xLa3Zr2-xSmxO12 (x=0-0.1) ceramics [J]. Materials Letters, 2018, 231:43-46. [7] MURUGAN R, RAMAKUMAR S, JANANI N. High Conductive Yttrium Doped Li7La3Zr2O12 Cubic Lithium Garnet [J]. Electrochemistry Communications, 2011, 13(12): 1373-5. [8] DHIVYA L, JANANI N, PALANIVEL B, et al. Li transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets [J]. Aip Advances, 2013, 3(8): 437. [9] WU J F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries [J]. Acs Applied Materials Interfaces, 2017, 9(14): 12461. [10] MATSUI M, TAKAHASHI K, SAKAMOTO K, et al. Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12[J]. Dalton Transactions, 2014, 43(3): 1019-24. [11] TENG S, TAN J, TIWARI A. Recent developments in garnet based solid state electrolytes for thin film batteries [J]. Current Opinion in Solid State Materials Science, 2014, 18(1): 29-38. [12] AWAKA J, TAKASHIMA A, KATAOKA K, et al. ChemInform Abstract: Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li7La3Zr2O12 [J]. Cheminform, 2011, 42(18): no-no. [13] ZHANG Y, CHEN F, RONG T, et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes [J]. Journal of Power Sources, 2014, 268(3): 960-4. [14] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-52. [15] MEIER K, LAINO T, CURIONI A. Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations [J]. Journal of Physical Chemistry C, 2014, 118(13): 6668#8211;79. [16] ALLEN J L, WOLFENSTINE J, RANGASAMY E, et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 206(1): 315-9. [17] LEE J M, KIM T, BAEK S W, et al. High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction [J]. Solid State Ionics, 2014, 258(5): 13-7. [18] HU Z, LIU H, RUAN H, et al. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction [J]. Ceramics International, 2016, 42(10): 12156-60. [19] KUMAR P J, NISHIMURA K, SENNA M, et al. A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery [J]. Rsc Advances, 2016, 6(67): [20] KOTOBUKI M, KANAMURA K, SATO Y, et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12solid electrolyte [J]. Journal of Power Sources, 2011, 196(18): 7750-4. [21] BUSCHMANN H, D LLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J]. Physical Chemistry Chemical Physics Pccp, 2011, 13(43): 19378-92. [22] CHEN R J, HUANG M, HUANG W Z, et al. Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12[J]. Solid State Ionics, 2014, 265(6): 7-12. [23] CHENG L, PARK J S, HOU H, et al. Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12 [J]. Journal of Materials Chemistry A, 2013, 2(1): 172-81. [24] XIE H, LI Y, GOODENOUGH J B. Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure [J]. Materials Research Bulletin, 2012, 47(5): 1229-32. [25] KOKAL I, SOMER M, NOTTEN P H L, et al. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure [J]. Solid State Ionics, 2011, 185(1): 42#8211;6. [26] SAKAMOTO J, RANGASAMY E, KIM H, et al. Synthesis of nano-scale fast ion conducting cubicLi7La3Zr2O12[J]. Nanotechnology, 2013, 24(42): 424005. [27] JIN Y, MCGINN P J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method [J]. Journal of Power Sources, 2011, 196(20): 8683-7. [28] LI Y, HAN J T, WANG C A, et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 209(4): 278-81.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2月25日 ~3月3日 确定课题,布置任务,阅读文献资料,并进一步检索文献。
3月4日 ~3月17日 翻译英文文献,完成开题报告;制订实验计划,了解实验仪器设备及实验方法。
3月18日 ~ 3月24日 修改开题报告及英文文献翻译,进行开题,根据意见完善实验计划。
您可能感兴趣的文章
- 蒸养纤维掺杂高铁低钙水泥混凝土的抗海水冲磨性能研究文献综述
- TIPA对水泥-锂渣体系力学性能和水化性能的影响外文翻译资料
- TEA对锂渣-水泥复合粘结剂流变性能及水化性能的影响外文翻译资料
- 硫酸铝无碱液体促进剂的效果研究烷醇胺对硅酸盐水泥水化过程的影响外文翻译资料
- 新型C-A-S-H/PCE纳米复合材料:设计表征和对水泥水化的影响外文翻译资料
- 工业中碳捕获技术以及以水泥回转窑作为核心的吸附再生器外文翻译资料
- Ca/Al层状双氢氧化物的制备及其结构对水泥早期强度的影响外文翻译资料
- 蒸汽养护后混凝土养护方法对混凝土机械强度和透气性的影响外文翻译资料
- 含白云石或石灰石的偏高岭土水泥在相组成与抗压强度的异同外文翻译资料
- 与硅质铁尾矿结合的混凝土的耐久性外文翻译资料