登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 无机非金属材料工程 > 正文

NaGdF4:Nd3 发光材料的制备及其性能研究任务书

 2020-04-30 16:11:44  

1. 毕业设计(论文)的内容和要求

稀土掺杂纳米发光材料由于其发射光谱稳定、谱带窄、化学稳定性高等特点,正逐步成为一种新兴的重要材料,并广泛应用于生物荧光成像、免疫分析、光动力治疗等医学领域。

近些年来,越来越多的研宄集中在了上转换发光领域,上转换发光通过多光子吸收或能量传递将长波长光转化为短波长光,通常是将近红外光转化为可见或紫外光,在生物荧光探针应用方面虽然有着谱带窄、探测灵敏度高、背景干扰低等优点,却受到生物组织穿透深度低、成像质量不高等缺点的限制。

nd3 掺杂发光材料能够吸收和发射出位于700-1100fnm近红外光,这一光谱范围被称为”近红外组织透明窗口”。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] L. Wondraczek, E. Tyystjarvi, J. Mendez-Ramos, F.A. Muller, Q. Zhang, Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis, Adv Sci (Weinh) 2(12) (2015) 1500218. [2] M.K. Tsang, G. Bai, J. Hao, Stimuli responsive upconversion luminescence nanomaterials and films for various applications, Chem Soc Rev 44(6) (2015) 1585-607. [3] G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Agren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3 )/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging, ACS Nano 6(9) (2012) 8280-7. [4] G. Chen, T.Y. Ohulchanskyy, W.C. Law, H. Agren, P.N. Prasad, Monodisperse NaYbF4:Tm3 /NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties, Nanoscale 3(5) (2011) 2003-8. [5] H. Liu, M.K. Jayakumar, K. Huang, Z. Wang, X. Zheng, H. Agren, Y. Zhang, Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications, Nanoscale 9(4) (2017) 1676-1686. [6] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications, Chem Rev 115(1) (2015) 395-465. [7] G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem Rev 114(10) (2014) 5161-214. [8] R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion, Nature Nanotechnology 10(3) (2015) 237. [9] X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chem Soc Rev 42(1) (2013) 173-201. [10] Y. Ding, X. Teng, H. Zhu, L. Wang, W. Pei, J.J. Zhu, L. Huang, W. Huang, Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission, Nanoscale 5(23) (2013) 11928-32. [11] J. Chen, J.X. Zhao, Upconversion nanomaterials: synthesis, mechanism, and applications in sensing, Sensors (Basel) 12(3) (2012) 2414-35. [12] V.D.E. Bm, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells, Cheminform 11(47) (2009) 11081. [13] F. Auzel, Upconversion and anti-Stokes processes with f and d ions in solids, Cheminform 35(16) (2004) 139. [14] J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, H. Zhang, Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3 , Er3 Nanocrystals/Submicroplates at Low Doping Level, Journal of Physical Chemistry B 112(49) (2008) 15666-15672. [15] J.H. Zeng, T. Xie, Z.H. Li, Y.D. Li, Monodispersed Nanocrystalline Fluoroperovskite Up-Conversion Phosphors, Cryst Growth Des 7(12) (2007) 2774-2777. [16] M. Wu, E.H. Song, Z.T. Chen, S. Ding, S. Ye, J.J. Zhou, S.Q. Xu, Q.Y. Zhang, Single-band red upconversion luminescence of Yb3 #8211;Er3 via nonequivalent substitution in perovskite KMgF3 nanocrystals, Journal of Materials Chemistry C 4(8) (2016) 1675-1684. [17] E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, G. Dong, Q. Zhang, Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3 ,Mn2 , Journal of Materials Chemistry C 1(27) (2013) 4209. [18] M. Wu, X.F. Jiang, E.H. Song, J. Su, Z.T. Chen, W.B. Dai, S. Ye, Q.Y. Zhang, Tailoring the upconversion of ABF3:Yb3 /Er3 through Mn2 doping, Journal of Materials Chemistry C 4(40) (2016) 9598-9607. [19] E. Song, Z. Chen, M. Wu, S. Ding, S. Ye, S. Zhou, Q. Zhang, Room-Temperature Wavelength-Tunable Single-Band Upconversion Luminescence from Yb3 /Mn2 Codoped Fluoride Perovskites ABF3, Advanced Optical Materials 4(5) (2016) 798-806. [20] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis, Nature 437(7055) (2005) 121-4. [21] V. Pischedda, G. Ferraris, G. Raade, Single-crystal X-ray diffraction study on neighborite (NaMgF3) from Gjerdingselva, Norway, Neues Jahrbuch f#252;r Mineralogie - Abhandlungen: Journal of Mineralogy and Geochemistry 182(1) (2005) 23-29. [22] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 32(5) (1976) 751-767. [23] S. Zeng, Z. Yi, W. Lu, C. Qian, H. Wang, L. Rao, T. Zeng, H. Liu, H. Liu, B. Fei, J. Hao, Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn2 Doping, Advanced Functional Materials 24(26) (2014) 4051-4059. [24] D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, Y. Wang, Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping, Journal of the American Chemical Society 132(29) (2010) 9976-9978. [25] V.M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften 14(21) (1926) 477-485. [26] C. Randall, A. Bhalla, T. Shrout, L. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order, Journal of Materials Research 5(4) (1990) 829-834. [27] G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic#8211;inorganic perovskites: new tricks for an old dog, Chemical Science 5(12) (2014) 4712-4715. [28] X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian, J. Lin, Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties, J Colloid Interface Sci 329(1) (2009) 103-6. [29] F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature 463(7284) (2010) 1061-5. [30] S. Zeng, G. Ren, C. Xu, Q. Yang, Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping, CrystEngComm 13(12) (2011) 4276. [31] S.M. Lee, S.N. Cho, J. Cheon, Anisotropic Shape Control of Colloidal Inorganic Nanocrystals, Advanced Materials 15(5) (2003) 441-444. [32] S. Zeng, G. Ren, C. Xu, Q. Yang, High uniformity and monodispersity of sodium rare-earth fluoride nanocrystals: controllable synthesis, shape evolution and optical properties, CrystEngComm 13(5) (2011) 1384-1390. [33] W. Qin, Z. Liu, C. Sin, C. Wu, G. Qin, Z. Chen, K. Zheng, Multi-ion cooperative processes in Yb3 clusters, Light: Science Applications 3(8) (2014) e193-e193. [34] B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells, Phys Chem Chem Phys 11(47) (2009) 11081-95. [35] W.B. Pei, B. Chen, L. Wang, J. Wu, X. Teng, R. Lau, L. Huang, W. Huang, NaF-mediated controlled-synthesis of multicolor Na(x)ScF(3 x):Yb/Er upconversion nanocrystals, Nanoscale 7(9) (2015) 4048-54. [36] M. Pang, X. Zhai, J. Feng, S. Song, R. Deng, Z. Wang, S. Yao, X. Ge, H. Zhang, One-step synthesis of water-soluble hexagonal NaScF4:Yb/Er nanocrystals with intense red emission, Dalton Trans 43(26) (2014) 10202-7. [37] D. Chen, L. Lei, R. Zhang, A. Yang, J. Xu, Y. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals, Chem Commun (Camb) 48(86) (2012) 10630-2. [38] F. Vetrone, J. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Significance of Yb3 concentration on the upconversion mechanisms in codoped Y2O3:Er3 , Yb3 nanocrystals, Journal of Applied Physics 96(1) (2004) 661-667. [39] S. Zeng, G. Ren, Q. Yang, Fabrication, formation mechanism and optical properties of novel single-crystal Er3 doped NaYbF4 micro-tubes, Journal of Materials Chemistry 20(11) (2010) 2152.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 11月25号到1月18号 查阅国内外相关文献,掌握制备发光材料的工艺方法 1月19号到2月24号 放寒假 2月25号到3月25号 探讨荧光粉的制备工艺 3月26号到4月30号 制备不同浓度Nd掺杂的NaGdF4上转换发光材料 5月1号到5月31号 使用相关软件处理分析实验数据,结合理论知识总结实验结果 6月1号到6月15号 写毕业论文,准备答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图