生物活体蛋白指导下的光催化材料的合成毕业论文
2021-11-15 21:36:06
论文总字数:30660字
摘 要
自然物质精妙的结构形成过程值得学习,以发展材料的制备新技术,我们称其为“材料的过程仿生制备技术”,意在发展颠覆性的室温或低温合成与加工技术。生物矿物是一种典型的有机-无机复合材料,具有完美的结构和优异的力学性能,而恰恰是这些少量的有机基质,在生物矿化过程中起着至关重要的作用。本研究工作中,以仿生物过程的合成为理念,学习生物矿物形成的重要特征:有机质在生物矿物的形成中起着至关重要的作用。近年来,仿生物过程的合成技术被用于制备多种领域的功能材料,但是利用新鲜天然蛋白来提高功能材料的性能研究鲜有报道,前人还发现,从同一种贝壳但生活在不同地区的贝壳中提取的外套膜液蛋白,对TiO2的光催化性能有显著不同的影响,因此,本文采用梁子湖新鲜的外套膜液蛋白作为调控剂,研究了不同外套膜液蛋白调控下晶体结构与形貌形成机制以及光催化性能,为功能复合材料的低温、室温合成提供新的思路和途径。
首先选取了梁子湖河蚌外套膜液蛋白和钛酸四丁酯作为主要原料,利用传统的水热合成,探究外套膜液蛋白对TiO2结构形貌控制作用。并且研究了不同浓度的外套膜液蛋白对产物结构的影响。结果表明,外套膜液蛋白能够成功指导了网络多孔结构锐钛矿的形成,并抑制了板钛矿的出现。当蛋白浓度为600 ug/ml时,TiO2网络结构发育更加规则、完善。梁子湖外套膜液蛋白的引入能够实现TiO2低温的氮掺杂,使二氧化钛具有一定的可见光催化性能,从而实现可见光染料降解,以及光产氢功能。随着蛋白浓度的升高,光催化性能先升高后降低。
此外,对外套膜液参与调控所得氮掺杂TiO2样品进行了光催化活性检测及锂离子电池性能测试,TiO2样品光谱吸收范围从380 nm提升到了700 nm。当蛋白浓度为600 ug/ml时,TiO2样品光催化活性最强,在光催化降解方面:在25分钟内最先将罗丹明B降解到20%以下。在光催化产氢方面:速率为94 umol g-1 h-1。在锂离子电池方面:在1C的电流密度下,其倍率为132 mAh/g,性能比较优异。
关键词:天然蛋白质;TiO2;光催化
Abstract
The exquisite structure formation process of natural materials is worth studying to develop new technologies for the preparation of materials. We call it "the bionic preparation technology of materials." "Bio-process bionic preparation technology" is the first new idea and new research direction proposed by Chinese scientists in the world. It will develop subversive room temperature or low temperature synthesis and processing technology. Biomineral is a typical organic-inorganic composite material with perfect structure and excellent mechanical properties. It is precisely these small organic matrices that play a vital role in the biomineralization process. In recent years, bioprocess-inspired synthetic techniques have been used to prepare functional materials in various fields, but there are few reports on the use of fresh natural proteins to improve the performance of functional materials. Predecessors have also found that from the same type of mussel but living in different The mantle fluid protein extracted from mussels in the region has a significantly different effect on the photocatalytic performance of TiO2. Therefore, in this paper, the fresh mantle membrane protein of Liangzi Lake is used as a regulator to study the formation mechanism and photocatalytic performance of crystal structure and morphology under the control of different mantle membrane liquid proteins. It provides new ideas and ways for the synthesis of functional composites at low temperature and room temperature. It provides new ideas and ways for the synthesis of functional composites at low temperature and room temperature.
Firstly, the mantle membrane protein of Liangzihu River mussel and tetrabutyl titanate were selected as the main raw materials, and the traditional hydrothermal synthesis was used to explore the effect of mantle membrane protein on the morphology of TiO2. And the effect of different concentrations of mantle fluid protein on product structure was studied. The results show that the mantle membrane fluid protein can successfully guide the formation of network anatase porous structure and inhibit the appearance of brookite. When the protein concentration is 600ug/ml, the development of TiO2 network structure is more regular and perfect. The introduction of Liangzihu's outer membrane liquid protein can achieve low-temperature nitrogen doping of TiO2, so that titanium dioxide has certain visible light catalytic properties, thereby achieving visible light dye degradation and photohydrogen production. As the protein concentration increases, the photocatalytic performance first Increase after decrease.
In addition, the nitrogen-doped TiO2 samples obtained by the coating film liquid control were tested for photocatalytic activity and lithium ion battery performance. The spectral absorption range of the TiO2 samples was increased from 380 nm to 700 nm. When the protein concentration is 600 ug/ml, the TiO2 sample has the strongest photocatalytic activity. In terms of photocatalytic degradation: Rhodamine B is first degraded to less than 20% within 25 minutes. In terms of photocatalytic hydrogen production: the rate is 94 umol g-1 h-1. In terms of lithium-ion batteries: at a current density of 1C, the rate is 132 mAh/g, which is a moderate level.
Key words : natural assorted proteins; TiO2; photocatalysis
目录
摘要 I
Abstract II
第一章 绪论 1
1.1材料的合成制备技术 1
1.2仿生制备技术 1
1.2.1仿生结构与功能 1
1.2.2仿生物过程的合成 5
1.3生物矿化 5
1.3.1生物矿物的种类与特点 5
1.3.2生物矿化的过程与机理 6
1.3.3蛋白诱导合成 6
1.4 TiO2介绍 10
1.5 TiO2改性 10
1.5.1 TiO2掺杂 10
1.5.2负载 11
1.5.3光敏化 11
1.6生物活体蛋白指导下的TiO2的合成 11
1.7研究目的、意义和内容 11
1.7.1研究目的和意义 11
1.7.2研究主要内容 12
第二章 实验方案设计 13
2.1实验试剂及仪器 13
2.2实验方案 13
2.3表征测试方法 14
2.3.1 X射线衍射仪(XRD) 14
2.3.2场发射扫描电子显微镜(FESEM) 14
2.3.3透射电子显微镜(TEM) 14
2.3.4 X射线光电子能谱分析(XPS) 14
2.3.5红外光谱 15
2.3.6拉曼光谱 15
2.4光催化实验 15
第三章 TiO2的微观结构调控 17
3.1引言 17
3.2实验方案 18
3.2.1外套膜液蛋白的提取 18
3.2.2低温下氮掺杂TiO2粉体的制备 18
3.3结果与讨论 18
3.4小结 25
第四章 网络多孔结构TiO2的功能特性研究 26
4.1引言 26
4.2实验方案 26
4.3结果与讨论 27
4.4小结 30
第五章 结论与展望 31
5.1结论 31
5.2展望 31
参考文献 32
致谢 34
第一章 绪论
1.1材料的合成制备技术
以温度作为划分点,材料的制备通常可以分为室温制备、中低温制备、高温制备以及超高温制备,如图1.1,像高温(放电等离子体,热等静压),超高温(自蔓延高温合成,激光)这样的传统方法能够在很短的时间内制备出材料。用高的温度尽管能较快的合成材料,但是也极其容易造成能源的浪费和环境的污染。因此,如何实现材料的室温合成或室温致密化是一个科学难题和挑战。考虑到,大自然能够使用光合作用、生物矿化以及自组装等多种途径,在常温常压下合成生命需要的物质。所以,人们提出,能否学习大自然对物质合成的精细过程,将其应用到材料制备上,实现在低温甚至室温下对无机矿物的合成与致密化。
请支付后下载全文,论文总字数:30660字
您可能感兴趣的文章
- 激光作用下ZrNiSn合金热电材料组成、结构和性能的演化规律开题报告
- 原位生长于碳纤维表面的钒氧化物柔性电极制备开题报告
- 锂硫电池用TixOy-S/HGs复合材料的制备与性能开题报告
- MnO2纳米片修饰ZnO纳米棒阵列的气敏性能研究开题报告
- 基于三维碳基孔结构和电解质协同优化的微型超级电容器文献综述
- 基于C-MEMS工艺的微型混合锂离子电容器构筑及性能开题报告
- 多孔碳负载钼基纳米材料作为高性能析氢电催化剂文献综述
- Cu掺杂ZnxCd1-xS纳米晶的制备与性能研究开题报告
- 用于光伏的III-V族半导体低成本生长外文翻译资料
- 太阳能电池中的GaSb / InGaAs 量子点阱混合结构有源区外文翻译资料