用于锌离子电池的壳聚糖基水凝胶聚合物电解质毕业论文
2022-01-09 18:37:29
论文总字数:25141字
摘 要
能源---贯穿着整个人类文明进化史,无论是走过的蒸汽时代还是后来的电气时代,社会的大踏步总是离不开生产力的进步、能源动力的创新。近一百多年,化石燃料包括石油、煤炭和干净的天然气,构成了能源的主体结构,而现在如何进行能源的升级转变成为今天的重中之重。
能源短缺问题日益备受关注的同时越来越多的学者将目光投向了如何找到一个既环保而又性能更佳的能量储存载体。当各国逐步制定禁产燃油车时间、大力投入人力物力研发新能源交通工具,包括电动摩托车、动力电池汽车、电动代步器对高容量储能电池的需求不断增长,都用的是锂离子动力电池,一方面锂动力电可以给我们产生足够的驱动力,另一方面它自身潜在的安全隐患不断对我们的生命财产造成威胁。近些年来屡次发生锂离子电池爆炸爆燃事件,惋惜后怕之时,锂离子电池的安全问题仍有待保证。锂离子电池所采用的有机电解液本身便具有一定的危险,一旦电池发生胀气或泄漏,很容易便致使电池微短路,具备可燃性的电解液将很快的燃烧起来,并将电池内的PP膜点燃,直接引起明火甚至是爆炸事件,安全问题不容忽视。为了解决这些问题,凝胶聚合物电解质在这种情况下应运而生。凝胶聚合物电解质可看作是介于液态电解质和固态电解质的中间相,其独有的微结构,保证了离子可通过其中存在的液态电解质分子进行传导。
水系锌离子电池,以水系电解液作为传导,高于使用有机电解液。锌负极可提供的体积比容量约5851 毫安时每立方厘米,比容量为820 毫安时每克,且可流通的电流交换密度较大、在水溶液中的过电位较高,稳定性方面也很出众,以锌负极为基础的锌离子电池成为了应用热点。
与此同时,自然界中的含氮有机化合物甲壳素脱乙酰反应能得到壳聚糖大分子,是一种储量仅次于蛋白质的含氮有机化合物。壳聚糖(Chitosan)呈现为白色粉末状固体,不溶于水,温度达到 224 ℃时会分解。分子中有羟基和氨基等官能团还有少量游离乙酰氨基,借助发生络合、水解、磺化、缩合、醚化等化学反应生成满足不同需要的有机衍生物。
在本实验中,将壳聚糖(脱乙酰80% ~ 95)和乙酸溶液(浓度为2%0作为原料,利用简单的浇铸法制备出壳聚糖基水凝胶聚合物电解质隔膜,并应用在锌离子电池中,制成V2O5/壳聚糖隔膜/Zn的电池体系,对隔膜和电池进行一系列表征,测试其性能。
关键词:锌离子电池;壳聚糖、凝胶聚合物电解质;电化学性能
Abstract
Energy --- Throughout the evolutionary history of human civilization, no matter whether it is the steam age or the later electrical age, the stride of society is always inseparable from the progress of productivity and the innovation of energy power. It is a pity that the reserves of non-renewable resources are limited and cannot be regenerated. Uncontrolled mining and uncontrolled large-scale discharge not only threaten the living environment of human beings, but also put tremendous pressure on nature. How to upgrade and transform energy resources has become a major issue The top priority.
The problem of energy shortage is getting more and more attention, and more and more scholars are looking at how to find an energy storage carrier that is both environmentally friendly and has better performance. As countries gradually formulate the time for fuel-prohibited fuel vehicles, invest heavily in manpower and material resources to develop new power vehicles, consist of energy motorcycles, power battery cars, and energy scooters, the need for high-capacity energy storage batteries continues to grow, all using lithium-ion power The battery, on the one hand, lithium power can give us enough driving force, on the other hand, its own potential safety hazards continue to threaten our lives and property. In recent years, there have been repeated explosions and explosions of lithium-ion batteries. When regretting, the safety of lithium-ion batteries still needs to be guaranteed. The organic electrolyte used in lithium-ion batteries has certain dangers. Once the battery swells or leaks, it is easy to be in the situation of short circuit. The flammable electrolyte will quickly burn up and the PP in the battery The film ignites, directly causing an open flame or even an explosion, and the safety issue cannot be ignored. For dealing with these troubles ,gel polymer electrolytes came true in this situation. The gel polymer electrolyte can be regarded as an intermediate phase between the liquid electrolyte and the solid electrolyte, and its unique microstructure ensures that ions can be conducted through the liquid electrolyte molecules present therein.
Water-based zinc ion batteries use water-based electrolytes as the conductor, which is higher than organic electrolytes. Zinc anode can provide a volume specific capacity of about 5,851 milliampere-hours per cubic centimeter and a specific capacity of 820 milliampere-hours per gram. The current exchange density is larger, the overpotential in aqueous solution is higher, and the stability is also Very outstanding, the zinc ion battery based on zinc anode has become a hot spot for application.
At the same time, the deacetylation reaction of chitosan, a nitrogen-containing organic compound in nature, can produce chitosan macromolecules, which is a nitrogen-containing organic compound with a reserves second only to protein. Chitosan (Chitosan) appears as a white powdery solid, insoluble in water, and decomposes when the temperature reaches 224 ℃. There are functional groups, including hydroxyl , molecule amino groups and some free acetamido, which can generate organic derivatives that meet different needs through chemical reactions such as complexation, hydrolysis, sulfonation, condensation, and etherification.
In this experiment, using chitosan (deacetylated 80% ~ 95) and acetic acid solution (concentration 2% 0) as raw materials, a simple casting method was used to prepare a chitosan-based hydrogel polymer electrolyte separator and apply it. In a zinc ion battery, a battery system of V2O5 / chitosan separator / Zn was made, and a series of characterizations were performed on the separator and battery to test their performance.
Keywords: zinc ion battery; chitosan, gel polymer electrolyte; electrochemical performance
目录
摘要 I
Abstract III
第一章 绪论 1
1.1 引言 1
1.2 锌离子电池简介 2
1.2.1 锌离子电池的优点 2
1.2.2 锌离子电池的工作原理 3
1.2.3 锌离子电池正极材料 4
1.2.4 锌离子电池负极材料 6
1.2.5 锌离子电池隔膜材料 6
1.3 聚合物电解质简介 6
1.3.1 聚合物电解质的发展 6
1.3.2 聚合物电解质分类 7
1.4 本文的研究目的和主要内容 8
1.4.1 研究目的 8
1.4.2 研究内容 9
第二章 实验材料与研究方法 10
2.1 实验试剂 10
2.2实验仪器 10
2.3材料物理表征 11
2.3.1 形貌表征 11
2.3.2吸液率和孔隙率表征 11
2.3.3力学性能表征 12
2.4电化学性能测试 12
2.4.1离子电导率测试 12
2.4.2线性扫描伏安测试 12
2.4.3循环伏安测试 13
2.4.4恒流充放电测试 13
第三章 壳聚糖基水凝胶聚合物电解质 14
3.1 引言 14
3.2壳聚糖基水凝胶聚合物电解质的制备 14
3.3壳聚糖基水凝胶聚合物电解质的物理性能 16
3.3.1 表面微观形貌 16
3.3.2吸液率和孔隙率 17
3.3.3力学性能 17
请支付后下载全文,论文总字数:25141字
您可能感兴趣的文章
- 激光作用下ZrNiSn合金热电材料组成、结构和性能的演化规律开题报告
- 原位生长于碳纤维表面的钒氧化物柔性电极制备开题报告
- 锂硫电池用TixOy-S/HGs复合材料的制备与性能开题报告
- MnO2纳米片修饰ZnO纳米棒阵列的气敏性能研究开题报告
- 基于三维碳基孔结构和电解质协同优化的微型超级电容器文献综述
- 基于C-MEMS工艺的微型混合锂离子电容器构筑及性能开题报告
- 多孔碳负载钼基纳米材料作为高性能析氢电催化剂文献综述
- Cu掺杂ZnxCd1-xS纳米晶的制备与性能研究开题报告
- 用于光伏的III-V族半导体低成本生长外文翻译资料
- 太阳能电池中的GaSb / InGaAs 量子点阱混合结构有源区外文翻译资料