登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 材料类 > 新能源材料与器件 > 正文

C/Cu2ZnSnS4(CZTS)复合材料制备及其光催化性能研究毕业论文

 2022-01-09 21:08:40  

论文总字数:21418字

摘 要

当今世界工业生产依旧需要依靠一次能源来维持,但是一次能源是有限的,世界能源分布的不均匀导致了国际关系的紧张,甚至有些国家因为能源问题而发动战争。由于一次能源都储藏在地下,开采十分危险,安全系数低,且开采时的粉尘、有害气体都会危害到开采人员的身体。而光催化的能量来源是太阳能,可以直接在陆地上获取,不存在场地危险,且太阳能是清洁能源,不会造成污染,影响人的身体。所以,太阳能光催化的开发是一项对于环境与人类都十分有利的研究,这也是目前世界研究生人员关注的问题,提高光催化效率就可以实现太阳能的高效转换,再加上太阳能是源源不断的,被高效转换后,世界的能源结构可能也会发生变化,不需要再依赖昂贵的一次能源。

本实验是通过溶胶-凝胶法结合热处理制备CZTS/C光催化剂。炭黑是常见的导电体,能够及时转移电子,阻止载流子的复合作用,使更多的空穴能与被吸附物质反应,增加光催化材料的活性。以硫脲、氯化锌、二水合氯化锡、一水合乙酸铜、炭黑为原料制备CZTS/C半导体光催化剂。运用XRD、SEM从形貌、晶体结构等方面对样品进行了分析。最后使用亚甲基蓝溶液,在氙灯照射下做降解实验,通过实验数据得出降解率,进而分析所得材料的降解性能,初步了解CZTS/C的光催化活性。结果如下:对样品进行系统的表征,不同CZTS/C配比下的XRD图谱表明,提高CZTS/C含量的不同对CZTS的结晶度及对污染物的降解率都有差别。在SEM表征图像中,CZTS颗粒组分很好地分散在炭黑颗粒上,能够导电地炭黑颗粒提高了光生载流子的分离效率。在亚甲基蓝降解实验中,CZTS/C光催化剂显示了较好的光催化效率。数据显示,可见光辐照1小时后,CZTS/C-3与CZTS/C-1.5具有较优异的光催化性能。

关键词:CZTS/C 光催化剂 可见光 光降解

Preparation and photocatalytic properties of Cu2ZnSnS4 (CZTS)/C composites

Abstract

Today's world industrial production still needs to rely on primary energy to maintain, but primary energy is limited. The uneven distribution of the world's energy leads to the tension of international relations, and even some countries launch wars because of energy problems. Because the primary energy is stored underground, mining is very dangerous, and the safety factor is low, and the dust and harmful gas during mining will harm the body of mining personnel. The energy source of photocatalysis is solar energy, which can be obtained directly on land, without site danger, and solar energy is clean energy, which will not cause pollution and affect human body. Therefore, the development of solar photocatalysis is a very favorable research for the environment and human beings, which is also the concern of the world's graduate students at present. Improving the efficiency of photocatalysis can realize the efficient conversion of solar energy. In addition, solar energy is continuously flowing. After being effectively converted, the world's energy structure may also change No need to rely on expensive primary energy.

In this experiment, CZTS/C photocatalyst was prepared by sol-gel process combined with heat treatment. Carbon black is a common conductor, which can transfer electrons in time, prevent the recombination of carriers, make more holes react with adsorbed materials, and increase the activity of photocatalytic materials. CZTS/C semiconductor photocatalyst was prepared from thiourea, zinc chloride, stannic chloride dihydrate, copper acetate monohydrate and carbon black. The experiment uses XRD and SEM to analyze the samples in terms of morphology and crystal structure. At the end of the experiment, it used xenon lamp to irradiate methylene blue solution to observe the activity of catalyst. This experiment can get relevant data. We can get the degradation rate by calculation. The catalyst activity can be more intuitively felt by drawing the data. Only from these aspects can we understand the photocatalytic activity of CZTS/C. The results are as follows: the samples were characterized systematically. The XRD patterns of different CZTS/C ratio showed that the different content of CZTS/C increased the crystallinity of CZTS and the degradation rate of pollutants were different. In the SEM characterization image, the CZTS particles are well dispersed on the carbon black particles, and the conductive carbon black particles can improve the separation efficiency of photocarriers. In the degradation experiment of methylene blue, CZTS/C photocatalyst showed better photocatalytic efficiency. The data show that CZTS/C-3 and CZTS/C-1.5 have excellent photocatalytic performance after 1 hour of visible light irradiation.

Key words: CZTS/C ; Photocatalyst; Visible light ; Photodegradation

目 录

摘 要 I

Abstract II

第一章 绪 论 1

1.1 引言 1

1.2 半导体光催化简介 1

1.2.1 光催化研究背景 1

1.3 影响光催化反应因素 3

1.3.1 光生电子和空穴的分离和捕获 3

1.3.2 晶体结构 3

1.3.3 晶格缺陷 3

1.3.4 比表面积 4

1.3.5 半导体晶粒尺寸 4

1.4 提高光催化性能途径 4

1.4.1 异质结 4

1.4.2 固溶体 5

1.4.3 电子牺牲剂 5

1.5 光催化应用 5

1.5.1 水净化 5

1.5.2 空气净化 5

1.5.3 杀菌抗菌 6

1.5.4 光催化制氢 6

1.5.5 还原CO2制有机燃料 6

1.6 CZTS简介 7

1.7 CZTS制备方法 7

1.7.1 真空热蒸发法 7

1.7.2 电子束蒸发法 7

1.7.3 电沉积法- 8

1.7.4 溶胶-凝胶法 8

1.8 课题研究内容及方法 8

第二章 CZTS/C催化剂材料制备 9

2.1 实验过程 9

2.1.1 实验原料 9

2.1.2 表征仪器和设备 9

2.1.3 样品制备 10

2.1.4 性能表征 10

2.1.3 光催化活性测试 10

2.2 结果与讨论 11

2.2.1 XRD分析 11

2.2.2 SEM分析 12

2.2.3 光催化活性分析 13

2.2.5 CZTS/C复合材料光催化降解机理讨论 14

第三章 结论与展望 16

3.1 结论 16

3.2 展望 16

参考文献 18

致谢 22

第一章 绪 论

1.1 引言

如今各国都在大力发展清洁能源,但仍然在起步阶段,工业上仍旧依赖未来几十年可能就消失的一次能源。如果再不大力开发新能源,那么在不久的将来,工业化、现代化的进程一定会受到阻碍,势必会影响经济发展,进而引发全球安全危机。我们的国家一次能源结构是“富煤、贫油、少气”这一结构也决定了现阶段一次能源利用方式以煤为主,这也决定了我国发电以煤电为主。

随着中国工业化进程的加快和一次能源使用的恶化,许多问题天生工业生产高度依赖石油和煤炭等一次能源。这种一次能源是不可再生的,总有一天会结束的,一次能源消耗造成的污染也很高。太阳能资源充足,是可再生能源,并且无污染[1],但它的能量密度很低,照射是间歇性的,而且难以储存。让太阳能分解在太阳能中产生的氢气水,通过光催化技术把看不见的太阳能转化成人类可以控制的氢能,是新能源开发地一个好的开端。

请支付后下载全文,论文总字数:21418字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图