光系统与生物矿化耦合条件下的晶体结构与形貌形成机制研究开题报告
2020-02-10 23:07:22
1. 研究目的与意义(文献综述)
自然界的生物物质经过几十亿年的进化和自然选择,生长出很多人工制造无法完成的精妙的微结构,得到很多独特的性能。仿生材料是近二十年里材料科学研究的热点。它是以模仿生物结构性能为基础,通过发现和研究自然界物质特殊或者有意义的结构和功能,然后通过各种制备手段人工制取并获得类似结构的材料,进而得到类似的功能。
在材料科学与工程中,有四个基本的要素:制备加工(processing)、结构(structure)、性能(property)和服役性能(performance),自然界的生物物质也具有类似的要素。通过学习自然生物结构、或者生物结构-性能的关系,采用实验室技术获得类似的结构,可以得到类似的性能,得到仿生材料。通常,自然物质可以在室温下完成结构形成过程,生长出精妙的微结构,得到独特的功能,而我们采用现代工业方法制备类似性能的材料往往需要高温等条件。考虑成本、资源的节约,发展材料的制备新技术,一个新的研究方向被提出来了—材料的过程仿生制备技术,也就是学习自然制造过程以及自然制造过程-生物结构的关系。通过材料的过程仿生制备技术可以得到仿生材料。
“材料的过程仿生制备技术”作为一个新的研究方向,在某些方面取得了若干有趣的阶段性成果,在此研究中,值得材料科学家学习的典型生物合成与制造方法包括生物矿化、光合作用和其它生物过程。生物矿化是指由生物体通过生物大分子的调控生成无机矿物的过程。与一般矿化最大不同在于有生物大分子生物体代谢、细胞、有机基质的参与。它是生物形成矿物的作用,是生物在特定的部位,在一定的物理化学条件下,在生物有机物质的控制或影响下,将溶液中的离子转变为固相矿物的作用。光合作用是另一种室温下完成的生物合成过程,其核心是二个光系统(光系统Ⅰ和光系统Ⅱ)的捕光与激发、电子传输、以及在活性位点上的氧化还原反应。自然界的生物矿化能够精确地控制过程而获得精细的晶体结构但合成和制造慢、效率低;人工光合反应可以利用自然和模拟光系统以及光生电子和空穴,合成新的材料,但难以企及生物矿化对晶体结构的精确控制。而将光合作用与生物矿化相结合的合成与制备技术则可以实现光能辅助下的矿化过程加快以及对结构的控制。
2. 研究的基本内容与方案
2.1 基本内容
3. 研究计划与安排
第1-3周:查阅相关文献资料,完成英文翻译。明确研究内容,了解研究所需原料、仪器和设备。确定技术方案,并完成开题报告;
第4-8周:按照设计方案,借助光合成制备系统,建立光驱动辅助下的生物矿化实验,完成光辅助下的tio2或fe2o3等无机材料的矿化实验,对矿化产物进行表征分析;
第9-11周:测试所得tio2或fe2o3的光催化性能或锂电池性能。
4. 参考文献(12篇以上)
[1]. h. a. lowenstam and s. weiner, on biomineralization, oxford universitypress, 1989.
[2]. s.mann, biomineralization: principles and concepts in bioinorganic materialschemistry, oxford university press, 2001.
[3]. w.d. kingery, introduction to ceramics, wiley, 1960.
您可能感兴趣的文章
- 激光作用下ZrNiSn合金热电材料组成、结构和性能的演化规律开题报告
- 原位生长于碳纤维表面的钒氧化物柔性电极制备开题报告
- 锂硫电池用TixOy-S/HGs复合材料的制备与性能开题报告
- MnO2纳米片修饰ZnO纳米棒阵列的气敏性能研究开题报告
- 基于三维碳基孔结构和电解质协同优化的微型超级电容器文献综述
- 基于C-MEMS工艺的微型混合锂离子电容器构筑及性能开题报告
- 多孔碳负载钼基纳米材料作为高性能析氢电催化剂文献综述
- Cu掺杂ZnxCd1-xS纳米晶的制备与性能研究开题报告
- 用于光伏的III-V族半导体低成本生长外文翻译资料
- 太阳能电池中的GaSb / InGaAs 量子点阱混合结构有源区外文翻译资料