时间相关效应对北斗ARAIM危险误导概率影响的仿真分析开题报告
2020-02-18 19:26:17
1. 研究目的与意义(文献综述)
1. 研究背景:
随着新的全球导航卫星系统(gnss)星座的部署,越来越多的冗余gnss测量变的可用,这最近引起了人们对高级接收机自主完好性监测(araim)的强烈兴趣。在araim开发期间,评估监测器在最坏情况下的完好性和平均风险意义上的连续性是至关重要的[2]。根据国际民用航空组织(icao)[3],对于预期的araim应用,总的完好性风险是按每小时或每种方法定义的,如被要求的导航性能(rnp)0.1和具有垂直引导的定位器性能(lpv)-200。当前的高级接收机自主完好性监测(araim)机载用户算法[1]采用一种简单的方法对完好性风险进行建模,即,给定方法的特定完好性丢失风险被分配给每个时段,以便用户接收机可以推演其保护水平。例如,在替代的星基增强系统(sbas)情况下,仅考虑无故障条件,那么将基于360秒内[3]的电离层相关性来确定独立样本的有效数量。然而,araim更复杂,因为无故障状态和故障状态之间的分配是动态的,这取决于卫星的几何形状和广播完善性参数,并且,取而代之的是araim假设一个单独的独立样本。
先前在地面增强系统(gbas)范围内进行的工作[5]解决了测试统计数据随时间推移的自相关性以及用于检测电离层不同形式的监视器之间的互相关性, 这些结果表明,通过考虑时间相关性,随后在假定独立的区间之间对连续性风险进行最简单的划分,可能获得比预计更高的误报率,这项工作已经扩展到araim [6]的应用,同时引发了一个关于过去是否正确执行完好性风险分配的问题,然而,这些先前的工作仅解决了与单个时间相关的随机变量。
2. 研究的基本内容与方案
1.研究内容:
本次研究将提出一种方法来估计给定时间间隔内的实际phmi,这种方法基于瞬时卫星再融合方法,对测试统计量和位置误差分别跨越相应测试阈值和保护界限的概率进行建模。归一化随机变量的分布是区间标准化一阶gauss-markov(gm)过程的最大值,对于该分布,用考虑了所有gnss测量误差源的相关函数生成了gm过程的108个样本函数,此外还将估计无检测和定位故障条件同时发生的可能性,通过组合这三个概率,导出了实际phmi随时间变化的上限,并且通过比较该上限和分配给各个周期的完好性风险来识别独立样本的有效数量。
2. 研究目标:
3. 研究计划与安排
2.17-3.8:完成开题报告
3.9-5.20:完成毕业论文的撰写及仿真设计工作
5.21-6.6:准备答辩ppt
4. 参考文献(12篇以上)
[1]J. Blanch et al., “Baseline Advanced RAIM User Algorithm and Possible Improvements,” IEEE Transactions on AerospaceandElectronic Systems, Vol. 51,No. 1,pp.713–732, Jan.2015.
[2]Zhai, Yawei, Joerger, Mathieu, Pervan, Boris, "Continuity and Availability in Dual-Frequency Multi-ConstellationARAIM," Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (IONGNSS 2015), Tampa, Florida, September2015, pp. 664-674.
[3]ICAO Annex 10,Aeronautical Telecommunications, Volume1 (Radio Navigation Aids), Amendment89,July 2006.
[4]B. Roturier, E. Chatre and J. Ventura-Traveset, The SBAS integrity concept standardised by ICAO: Application to EGNOS.The Journal of Navigation, Vol.49,no196, pp.65-77, 2001.
[5]Pervan, Boris, Khanafseh,Samer, Patel,Jaymin,"Test Statistic Auto-andCross-correlation Effectson Monitor False Alert and Missed Detection Probabilities,"Proceedings of the 2017 International Technical Meeting of The Institute of Navigation, Monterey,California,January 2017, pp. 562-590.[6]Pervan, Boris, “ARAIM Fault Detection and Exclusion,” presentation presented at International Technical Symposium onNavigation and Timing (ITSNT) 2017, Toulouse,France, November2017.
[7]Brown, Robert Grover and Hwang, Patric Y. C., Introduction to random signals and applied Kalman filtering: withMATLABexercises, 4th ed.,John Wiley and Sons, 2012.
[8]EU-U.S. Cooperation on Satellite Navigation Working Group C, “EU-US Cooperation on Satellite Navigation Working Group C ARAIM Technical Subgroup Milestone Report 3," working-group-c/ARAIM-milestone-3-report.pdf. Accessed September2018.
[9]MATLAB and StatisticsToolboxRelease 2012b,The MathWorks, Inc., Natick,Massachusetts,United States.
[10]M. Joerger andB. Pervan, “Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM,” IEEE Transactions on Aerospace andElectronic Systems, Vol.52,No.2, pp. 726-742, April2016.
[11]Joerger, Mathieu, Chan, Fang-Cheng, Pervan, Boris, "Solution Separation Versus Residual-Based RAIM,” NAVIGATION,Journal of The Institute of Navigation, Vol. 61, No. 4, Winter 2014, pp. 273-291.
[12]Capinski, M. and Kopp, E., Measure, Integral andProbability, 2nd ed., Springer-Verlag,1999.
[13]ARAIM Matlab Algorithm Availability Simulation Tool (MAAST), https://gps.stanford.edu/resources/tools/maast.
[14]Zhai, Yawei,Pervan,Boris,Joerger, Mathieu, "H-ARAIM Exclusion: Requirements and Performance,"Proceedings of the29thInternational Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2016), Portland,Oregon, September 2016, pp. 1713-1725.
[15]A. Papoulis and S.U. Pillai, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 4th edition, 2002.
|
|