基于FPGA的超声波测距系统的设计
2022-11-15 09:49:27
论文总字数:19744字
摘 要
在目前各式各样测距系统中,检测方法最常用的就是声波测距,这种检测避免了直接接触。首先它可以发射频率固定的超声波,当检测被摄目标时超声波就会被反射。这种方式的检测方法在车辆的无人驾驶和导航中被得到广泛应用。如果想要换算出距离,可以给出脉冲信号让传感器发射超声波,然后另外的探头就会接收到的这种频率超声波,根据计数器所记时间,代入公式就可轻易的得出数据,这种方法的测距方式相比其它的优势更多,有较强的适应能力,不会轻易受物体表面颜色、光线强度等影响。即使被测物体处于强电磁干扰、视野不明等复杂的测量环境下,也不会对测距的精度造成大的影响。
但是在使用超声波进行测距时也有局限性,当处在特殊环境中时会产生测量盲区,并且目前市场上的超声波测距系统大部分采用单片机来产生驱动信号,虽然降低了成本但是其测量精度往往差强人意,因此提高超声波测距精度以及研究避免产生测距盲区有十分重要的现实意义。而FPGA具有内设丰富的特点,而且运行速度极快可以同时处理多路数据,为设计性能出众的测距系统找到了新的解决思路,为此本文设计一种基于FPGA的超声波测距系统。
关键词: FPGA;超声波测距;LCD1602;多路数据同时处理
Ultrasonic distance measurement system based on FPGA
Abstract
At present in each kind of ranging system, the detection method most commonly used is the sound wave ranging, this kind of detection avoided the direct contact. First, it emits ultrasound at a fixed frequency, which is reflected when a target is detected. This kind of detection method is widely used in vehicle unmanned driving and navigation. If you want to calculate the distance, you can give a pulse signal to the sensor to emit the ultrasonic wave, and then another probe will receive the frequency ultrasonic wave. According to the time recorded by the counter, you can easily get the data by substituting the formula, compared with other methods, this method has more advantages and stronger adaptability, and is not easily affected by the color of the object surface, light intensity and so on. Even if the measured object is in the complex measurement environment such as strong electromagnetic interference, unclear field of vision, it will not have a great impact on the accuracy of ranging.
However, there are limitations in the use of ultrasonic ranging. When in a special environment, there will be a measurement blind area. At present, most of the ultrasonic ranging systems on the market use single-chip computers to generate driving signals, although the cost is reduced, the measurement accuracy is not satisfactory, so it is of great practical significance to improve the precision of ultrasonic ranging and to avoid the blind zone. But the FPGA has the characteristic of abundant internal devices, and the running speed is extremely fast, and it can process multi-channel data at the same time.
Key Words: FPGA; ultrasonic ranging; LCD1602; multi-channel data processing simultaneously
目录
摘 要 I
Abstract II
第一章 引 言 1
1.1 课题研究的背景 1
1.2国内外研究现状 1
1.3本章小结 2
第二章 设计方案及论证 3
2.1超声波的特性 3
2.2 超声波测距原理 3
2.3 FPGA对于设计的必要性 5
2.3.1 基于单片机的超声波测距系统 5
2.3.2 基于FPGA的超声波测距系统 5
2.3.3 两种测距方案比较 5
2.4 可编程逻辑器件 6
2.5 本章小结 6
第三章 系统硬件结构平台 7
3.1 FPGA核心板结构 7
3.2 超声波测距电路 8
3.3 显示模块电路设计 9
3.3.1 LED数码管显示 9
3.3.2 LCD1602液晶显示 10
3.3.3 超声波测距系统显示电路方案设计 11
3.4 报警模块电路设计 12
3.4.1 有源蜂鸣器 12
3.4.2 蜂鸣器报警 12
3.5 本章小结 12
第四章 系统程序编译及设计 13
4.1 编译工具quartus简介 13
4.2 程序流程图 13
4.3 程序代码 14
4.3.1 超声波测距模块 15
4.3.2 分频模块 15
图4.3.4 分频模块图 16
4.3.3 LCD显示模块 16
4.3.4 顶层模块 16
4.4 本章小结 17
第五章 实验数据对比 18
5.1 系统实物展示 18
5.2实际测量数据对比 18
5.3 数据误差分析 20
5.4 本章小结 20
第六章 总结 21
致 谢 22
参考文献 23
第一章 引 言
剩余内容已隐藏,请支付后下载全文,论文总字数:19744字