Fe2O3光电极的制备及其光电催化性能的研究任务书
2020-04-29 19:05:11
1. 毕业设计(论文)的内容和要求
当今能源危机以及环境污染日益严重。
以太阳能驱动的水分解为解决这些问题提供了一个全新的绿色途径,已经受到研究者们的广泛关注。
光电催化过程能够整合光催化和电催化两者的优势,从而实现对水分解更高的效率和更理想的选择性。
2. 参考文献
[1] A. Liao, Y. Zhou, L. Xiao, C. Zhang, C. Wu, A. M. Asiri, M. Xiao, Z. Zou. Direct Z scheme-fashioned photoanode systems consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers toward enhanced photoelectrochemical water splitting performance. Nanoscale, 2019, 11(1), 109-14. [2] L. Chen, S. Wu, D. Ma, A. Shang, X. Li. Optoelectronic modeling of the Si/α-Fe2O3 heterojunction photoanode. Nano Energy, 2018, 43,177-83. [3] F. Li, J. Li, J. Zhang, L. Gao, X. Long, Y. Hu, S. Li, J. Jin, J. Ma. NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe2O3 Nanoarrays: An Efficient Hole Extraction p#8211;n Heterojunction Photoanode for Water Oxidation. 2018, 11(13), 2156-64. [4] Y. Zhang, Y. Li, W. Sun, C. Yuan, B. Wang, W. Zhang, X.-M. Song. Fe2O3/BiOI-Based Photoanode with n-p Heterogeneous Structure for Photoelectric Conversion. Langmuir, 2017, 33(43), 12065-71. [5] S.-S. Yi, J.-M. Yan, Q. Jiang. Carbon quantum dot sensitized integrated Fe2O3@g-C3N4 core-shell nanoarray photoanode towards highly efficient water oxidation. Journal of Materials Chemistry A, 2018, 6(21), 9839-45. [6] K.-H. Ye, Z. Wang, H. Li, Y. Yuan, Y. Huang, W. Mai. A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting. Science China-Materials, 2018, 61(6), 887-94. [7] Z. Xu, S. C. Yan, Z. Shi, Y. F. Yao, P. Zhou, H. Y. Wang, Z. G. Zou. Adjusting the Crystallinity of Mesoporous Spinel CoGa2O4 for Efficient Water Oxidation. Acs Appl Mater Inter, 2016, 8(20), 12887-93. [8] J. Xiao, H. Huang, Q. Huang, X. Li, X. Hou, L. Zhao, R. Ma, H. Chen, Y. Li. Remarkable improvement of the turn-on characteristics of a Fe2O3 photoanode for photoelectrochemical water splitting with coating a FeCoW oxy-hydroxide gel. Applied Catalysis B-Environmental, 2017, 212,89-96. [9] G. Wang, B. Wang, C. Su, D. Li, L. Zhang, R. Chong, Z. Chang. Enhancing and stabilizing alpha-Fe2O3 photoanode towards neutral water oxidation: Introducing a dual-functional NiCoAl layered double hydroxide overlayer. Journal of Catalysis, 2018, 359,287-95. [10] A. Verma, A. Srivastav, S. Sharma, P. Badami, V. R. Satsangi, R. Shrivastau, A. M. Kannan, D. K. Avasthi, S. Dass. MWCNTs and Cu2O sensitized Ti-Fe2O3 photoanode for improved water splitting performance. International Journal of Hydrogen Energy, 2018, 43(12), 6049-59. [11] Y. W. Phuan, M. N. Chong, J. D. Ocon, E. S. Chan. A novel ternary nanostructured carbonaceous-metal-semiconductor eRGO/NiO/alpha-Fe2O3 heterojunction photoanode with enhanced charge transfer properties for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 169,236-44. [12] O. Moradlou, Z. Rabiei, A. Banazadeh, J. Warzywoda, M. Zirak. Carbon quantum dots as nano-scaffolds for alpha-Fe2O3 growth: Preparation of Ti/CQD@alpha-Fe2O3 photoanode for water splitting under visible light irradiation. Applied Catalysis B-Environmental, 2018, 227,178-89. [13] M. A. Mahadik, A. Subramanian, J. Ryu, M. Cho, J. S. Jang. A hydrothermally grown CdS nanograin-sensitized 1D Zr:alpha-Fe2O3/FTO photoanode for efficient solar-light-driven photoelectrochemical performance. Dalton Transactions, 2017, 46(7), 2377-86. [14] G. Liu, Y. Zhao, K. Wang, D. He, R. Yao, J. Li. Ultrasmall NiFe-Phosphate Nanoparticles Incorporated alpha-Fe2O3 Nanoarrays Photoanode Realizing High Efficient Solar Water Splitting. Acs Sustainable Chemistry Engineering, 2018, 6(2), 2353-61. [15] L. Li, C. Liu, H. Zhang, P. Liang, N. Mitsuzaki, Z. Chen. Synergistic effect of Ti(OBu)(4) and annealing regime on the structure, morphology and photoelectrochemical response of alpha-Fe2O3 photoanode. Electrochimica Acta, 2018, 281,246-56.
3. 毕业设计(论文)进程安排
2018年12月-2019年1月 查找相关文献资料,了解实验的装置,相关的理论,写开题报告,开展初步的实验; 2019年2月-2019年4月 全面开展实验,具体包括样品的制备,数据的采集,数据的初步分析等; 2019年5月 毕业论文的撰写,毕业论文的答辩等