基于MATLAB的人脸识别方法研究文献综述
2020-04-14 17:14:04
人脸识别技术是包括人脸检测和人脸身份认证技术在内的识别技术,人脸检测是根据所获得视频或者图片信息,利用图像处理和计算机视觉相关算法,从图像中判断是否有人脸,并给出存在人脸的数量和位置,更进一步的是通过脸与脸的匹配识别人脸的身份。
人脸识别技术的研究无论在理论上还是在实践中都有很大的意义,它涵盖了数字图像处理、神经网络、心理学、生理学、模式识别、计算机视觉以及人工智能等各方面的知识内容,对推动各个学科领域的发展具有重要的理论意义。在公安、金融、网络安全、物业管理以及考勤等各种领域也都有着巨大的应用价值。如人脸识别技术可以快速地计算出实时采集到脸部数据与人脸图像数据库中已知人员的脸部数据之间的相似度,返回鉴别结果和相对应的可信度。如应用面像捕捉,人脸识别技术可以在监控范围中跟踪一个人并确定他的位置。如在商场、银行、交易所等和金融相关场所,加以人脸识别智能监控,排除不法分子的侵入。利用人脸识别技术,可以进行计算机的登录控制,可以进行应用程序安全使用、数据库安全访问和文件加密,可以实现局域网和广域网的安全控制,可以保护电子商务的安全性。如门禁控制,通过摄像机动态捕获人脸,将人脸信息同数据库中的人脸信息进行检索对比,只有图像信息符合的人才可以进入,否则拒绝进入。在日常生活中,人们识别周围的人用的最多的是人脸。由于人脸识别的非侵犯性,具有直接、友好、方便的特点,是人们最容易接受的身份鉴别方式。
模式识别技术早在上个世纪 60 年代就已经有人提出,由于当时计算机处理速度的限制,只能从理论上证明是可行的。20世纪90年代以来,随着高速度高性能计算机的出现,人脸识别方法有了重大突破,进入了真正的机器自动识别阶段,人脸识别研究也得到了前所未有的重视。欧美等各高校都建立了人脸识别的实验室,其中著名的大学包括麻省理工学院(MIT)、卡内基·梅隆大学(CMU)等。在美国主要有麻神理工学院等研究实验室提出的特征人脸对特征空间的投影来实现;在法国已经把人脸识别身份认证技术应用到自助取款机上,在实际使用时需要用一台 3D 摄像机,采集人的立体影像来鉴定身份。目前,美国许多研究小组相继投入到人脸识别方面的研究工作,他们的研究工作得到了美国军方、警方和大公司的资助,进展迅速。美国军方更是在每年组织人脸识别大赛(FERT),以促进人脸识别的研究。日本sony公司最新推出的数码相机已经整合了人脸自动识别功能,在拍照时,可以自动检测出人脸区域并进行对焦,并且还具有识别笑脸的功能,能够自动检测出笑脸。2007 年 3 月,美国 NIST 报告了 2006 年人脸识别供应商评测(FRVT2006)结果,对控制光照条件下的极高分辨率正面人脸图像,最小错误接受率为 0.001时,最小错误拒绝率已达到 0.01,对高分辨率、低分辨率下的正面人脸图像的识别,这个数据也分别达到了 0.021 与 0.024。在一定条件,有些技术甚至超过了人类的人脸识别力。
国内对于人脸识别的研究较之国外稍晚一些,但是发展速度很快,同时,国家对人脸识别技术的研究也给予了高度的重视。九十年代中后期以来,国内众多研究机构的研究组在国家自然科学基金、863 计划等资助下开始对人脸识别进行了研究。其中,具有代表性的人脸识别系统有:清华大学电子系丁晓青教授研究小组开发的 THfaceID 系统;中国科技大电子科学与技术系庄镇泉教授研究小组开发的人脸识别考勤系统(KD-Face2.0);中科院计算所高文研究组开发的GodEye系统;清华大学电子系苏光大教授研究小组开发的大型人脸综合识别系统;中科院自动化所李子青研究小组开发的人脸识别系统等。2008 年,在北京奥运会及残奥会开闭幕式,使用了由 CBSR 研制的人脸识别技术进行实名制门票查验。在奥运会及残奥会开闭幕式中,约 36 万人次经过了人脸识别系统的验证后进入开闭幕式现场。为奥运会的安保工作做出了巨大的贡献,该技术拥有完全独立自主的知识产权,人脸识别系统的性能优良,在国际上亦处于领先地位。2011 年 1 月,由台湾政府资助开发出了新型的人脸识别自动售货机,该机器可以应用在某些特殊商品的销售领域中,如保健产品、面膜、剃须刀等,该人脸识别自动售货机可以根据消费者面部的特征向其推荐特定的商品。同时,人脸识别技术也可以帮助解决很多社会问题,比如,目前的解救乞讨儿童的公益活动。其中,以中科院自动化所免费提供人脸识别相关的技术支持,并与多个网络平台合作尽快的付诸于实践。
{title}2. 研究的基本内容与方案
{title}人脸识别技术是基于生物特征的识别方式,利用人类自身所拥有的、并且能够唯一标示其身份的生理特征或行为特征进行身份验证技术。也就是给定一场景的静止或视频图象,利用训算机里存储的人脸数据库,确定场景中的一个或多个人。
人脸识别过程需要完成以下几方面的工作:
人脸检测:从各种场景中检测出人脸的存在,并从场景中准确分离出人脸区域;
预处理:校正人脸尺度、光照以及旋转等方面的变化,得到规范化的人脸图像;
特征提取:从人脸图像中提取出人脸具有代表性的特征信息,并用一定的方式加以描述;
人脸识别:根据所提取的特征信息,将待识别的人脸与数据库中的人脸进行比较,找到数据库中最相似的人脸