Vcsel器件的测试关键技术研究文献综述
2020-04-14 17:18:24
垂直腔面发射激光器(VCSEL)是一项久经验证但直到最近才被挖掘的利基技术,由于智能手机及其它移动设备中引入的3D人脸识别应用,而突然变得非常热门。
VCSEL之前主要作为一种低成本运动跟踪和数据传输的光源技术用于计算机鼠标、激光打印机和光纤通信。但是,随着苹果公司(Apple)决定在其旗舰手机iPhone X中使用VCSEL进行3D人脸识别,使VCSEL技术有了新的发展方向。苹果的这一技术抉择,以及紧随其后的智能手机和消费电子产品制造商的大量涌入,使整个VCSEL市场新的制造、测试和验证规模不断扩大。
半导体激光器主要分为边发射半导体激光器 EEL(edge-emitting laser)和垂直腔面发射半导体激光器VCSEL两种类型。边发射半导体激光器具有高的光电转换效率和高的输出功率。但是边发射半导体激光器发散角较大,并且平行和垂直于 PN结的两个方向发射角相差较大,这一缺陷极大的限制了边发射半导体激光器的应用范围。垂直腔面发射半导体激光器具有较好的光束质量和圆对称的光斑分布,发散角较小。KUZNETSOV等研究人员制备得到的光泵浦垂直腔面发射半导体激光器,其集高输出功率和高转换效率和高质量光束等优点于一身。
VCSEL具有完美的光束质量、小的发散角和圆对称光场分布使其与光纤的耦合效率较高,其与多模光纤的耦合效率可大于90%。其较小的有源层体积,使其产生激光的阈值电流较低。极短的谐振腔长度,使得纵模间距变大,易于实现单纵模激光运转。具有垂直于衬底表面光出射方向,易于通过高密度集成实现高功率激光输出。高的传输速率和调制频率,也有利于高速光纤网路传输通信。
VCSEL只是少数几种硅光子方案中的一类,开始吸引了市场的极大关注。整个半导体行业都在努力将这些技术中的一种或多种引入主流,尤其是在通过引线传输电子的先进节点变得愈发困难的情况下。随着新应用的兴起,VCSEL技术得到了显著重视和改善,我们在克服了学习曲线之后,实现大规模生产制造,当进入第二个大规模应用——采用VCSEL阵列的激光雷达(LiDAR)时,这将是自动驾驶所必需的关键技术。此外,VCSEL已经在服务器集群中用于机架到机架的通信。在板对板通信(例如光学背板)应用之后,理想的是芯片到芯片的通信,最终将采用全光互连。所以对于VCSEL器件的研究将有助于开拓一个全新的市场,产生巨大的经济效益,可以达到超长距离、超高速光纤网络和高性能、低成本光互连网以及光学存储密度等更高的要求。
自 1977 年,日本东京工业大学的伊贺健一(Kenichi Iga)提出 VCSEL的概念开始,VCSEL 各个方面的研究到现在均获得了长足的进展.VCSEL的光学谐振腔与半导体芯片的衬底垂直,能够实现芯片表面的激光发射,有阈值电流低、稳定单波长工作、易高频调制、易二维集成、无腔面阈值损伤、动态单模工作、圆形对称光斑和光纤耦合效率高等优点。
到 2001年为止,全球 已铺设1000万公里 以 上的多模光纤,其中 80%以上是用于数据通信或 局域网。多模光纤的广泛部署为多模发射接收机 提供 了巨大市场。在各类激光器 中,发射 850nm波长的 VCSEL是这种应用的最强竞争者之一。
江苏华芯半导体科技有限公司于 2017 年 3 月 2 日宣布,其自主开发的 30G VCSEL 芯片 已通过客户测试,并实现规模量产。该 VCSEL芯片完全采用自主创新的专利技术,特别是独有的纳米层精确控制与补偿外延技术和芯片 BCB 平整制程,使得该芯片具备高频、高温、高湿以及复杂电磁环境工作的能力,可大大降低数据中心的耗电量。此款 850 nm 中心波长的 VCSEL 芯片的主要参数为:功率大于 3.5 mW,RMS 谱宽小于 0.4 nm,阈值电流 0.8~1.2 mA,斜率效率 0.5~0.7 W/A。
随着VCSEL的研究深入以及应用需求的拓展,VCSEL不仅在手机、消费性电子等领域发挥越来越重要的作用,VCSEL还可以用来进行人脸识别、3D 感测、手势侦测和 VR(虚拟现实)/AR(增强现实)/MR(混合现实)等。当然,VCSEL将来也可以大量应用在物联网、5G 通信、RF元件、ADAS(先进驾驶系统)等,所以VCSEL未来应用和市场热度应该会受到更多的重视。