登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 电子信息类 > 通信工程 > 正文

基于卷积神经网络的图像分类研究文献综述

 2020-04-25 20:21:03  

1.目的及意义

随着因特网的迅速发展,在事物分类方面,现有的技术已无法满足人们高效工作的需求。在受到生物自然视觉认知机制的启发,人们可以以一定的模型对事物进行特征提取,而后根据特征对该事物进行分类、识别、预测或决策等,卷积神经网络随即应运而生。

卷积神经网络 (Convolutional neuralnetworks, CNN) 是一种带有卷积结构的神经网络, 卷积结构采用权值共享的方式减少了深层网络占用的内存量, 也减少了网络的参数个数, 缓解模型的过拟合问题。为了保证一定程度的平移、 尺度、 畸变不变性, CNN 设计了局部感受野、共享权重和空间或时间下采样, 提出用于字符识别的卷积神经网络LeNet-5。LeNet-5 由卷积层、下采样层、全连接层构成, 该系统在小规模手写数字识别中取得了较好的结果。2012 年, Krizhevsky等采用称为AlexNet 的卷积网络在 ImageNet 竞赛图像分类任务中取得了最好的成绩, 是CNN 在大规模图像分类中的巨大成功。AlexNet 网络具有更深层的结构, 并设计了ReLU(Rectified linear unit) 作为非线性激活函数以及 Dropout 来避免过拟合。在 AlexNet 之后, 研究者由提出了网络层数更深的神经网络,例如Google设计的GoogLeNet和MSRA设计的152层的深度残差网络等。

CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

国内外研究现状

1986 年, Rumelhart 等提出人工神经网络的反向传播算法 (Back propagation, BP), 掀起了神经网络在机器学习中的研究热潮。但是由于BP神经网络存在容易发生过拟合、训练时间长的缺陷, 90年代兴起的基于统计学习理论的支持向量机具有很强的小样本学习能力。学习效果也优于BP神经网络,导致了神经网络的研究再次跌入低估。

2006 年, Hinton 等人在 Science 上提出了深度学习. 这篇文章的两个主要观点是: 1) 多隐层的人工神经网络具有优异的特征学习能力, 学习到的数据更能反映数据的本质特征,有利于可视化或分类;2) 深度神经网络在训练上的难度, 可以通过逐层无监督训练有效克服。理论研究表明为了学习到可表示高层抽象特征的复杂函数, 需要设计深度网络。深度网络由多层非线性算子构成, 典型设计是具有多层隐节点的神经网络。但是随着网络层数的加大, 如何搜索深度结构的参数空间成为具有挑战性的任务。近年来, 深度学习取得成功的主要原因有:

1) 在训练数据上, 大规模训练数据的出现 (如ImageNet),为深度学习提供了好的训练资源;

2) 计算机硬件的飞速发展 (特别是GPU 的出现) 使得训练大规模神经网络成为可能。

{title}

2. 研究的基本内容与方案

{title}

2.1设计的基本内容

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图