基于遗传算法的组合优化问题的研究开题报告
2022-01-11 17:50:44
全文总字数:5963字
1. 研究目的与意义及国内外研究现状
通过模仿生物遗传学和自然选择的机理,借助生物遗传学的观点,通过编码,选择,交叉,变异等算子构造一类优化搜索算法(遗传算法),在给定一组n个城市和他们两两之间的直达距离的前提下,在合理的时间内,找出一个闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短(tsp问题)。并且算法要达到要求的精度,同时对选择的算法做出适当的分析和评估。
旅行商问题,即tsp问题(traveling salesman problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。tsp问题本质是一个组合优化问题。该问题可以被证明具有npc计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。
与传统的优化相比,在求取符合运行要求的全局最优解时候,遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化算法,可以用于tsp问题的求解问题。国内外研究现状
遗传算法是一种仿生优化算法,,它是借鉴生物界自然选择和遗传机制发展起来的随机搜索算法,即为一种全局优化自适应概率搜索算法。近年来,遗传算法作为一种实用、高效、鲁棒性的优化技术发展极为迅速,受到了越来越多的国内外学者的广泛关注。
2. 研究的基本内容
遗传算法是一种借鉴生物界自然选择和遗传机制的高度并行、随机、自适应的全局优化概率搜索算法,但算法自身的一些不足也有待于进一步地改进和完善。
而作为代表性问题——tsp问题是一个组合优化问题,该问题可以被证明具有npc计算复杂性,该问题的近似求解算法向来是相关领域的研究重点。为此,本课题拟用遗传算法求解tsp问题为研究对象,分析遗传算法的运行机理。因此我将进行以下四方面的研究:
3. 实施方案、进度安排及预期效果
实施方案:
1、大数据量的解决:对城市进行编号,每个城市分别用1到n之间不同的整数表示,n个整数的一个排列就代表了旅行商的一个可能解。(即整数编码问题)
2、①.交配规则:
4. 参考文献
[1] 陈国良,王煦法,庄镇泉,王东生:遗传算法及其应用,人民邮电出版社,1996年
[2] 李敏强,寇纪淞,林丹,李书全:遗传算法的基本理论与应用,科学出版社,2002年
[3] 王小平,曹立民:遗传算法——理论、应用与软件实现,西安交通大学出版社,2002年