近53年来海河流域降水的时空变化特征外文翻译资料
2022-12-05 16:53:29
doi:10.5194/piahs-368-138-2015
Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014).
Spatial and temporal variations of precipitation in Haihe River basin in the recent 53 years
BING WANG amp; ZHIXIA XU
Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China wangb1215@163.com
Abstract In the context of climate change, the precipitation of the Haihe River basin undergoes significant changes. Based on the daily precipitation data from 58 stations over 53 years in and around Haihe River basin, the spatial and temporal variation of precipitation was analysed by the M-K test method using the ArcGIS platform. The results showed that there is a descending trend in the annual precipitation and after the mutations, 97.9% of the area experiences a precipitation reduction by the amount of 0–200 mm. The proportion of precipitation in the flood season demonstrates a decreasing tendency, in which the proportion of precipitation in July declines significantly. Meanwhile, precipitation in July also experiences a downward tendency and after the mutations, the decrement of precipitation in July amounts to 0–84 mm. However, annual precipitation and the proportion of precipitation in June all experience a rising trend. After the mutations, the added precipitation concentrates in 0–36 mm. With the increase of the proportion of nonflood season precipitation, the precipitation and proportion of precipitation in May both exhibit an increasing tendency. After the mutations, the added value of precipitation concentrates as 0–29 mm.
Key words Haihe River basin; precipitation, M-K test method; spatial–temporal variation
INTRODUCTION
Haihe River basin, whose catchment is 317 900 km2 is located between 112°–120°E, and 35°– 43°N, and includes the Haihe River and Luan River water system. Because of its special geographical position (arid to humid transition zone) there are obviously zonal seasonal and interannual differences in its precipitation. Haihe River basin experiences frequent floods and water shortages (Guo and Liu, 2004). Since precipitation is the main source of water supply, analysis of the spatial and temporal variation of precipitation in Haihe River basin is of great importance. In recent years, some scholars have conducted a series of studies on the precipitation of Haihe River basin (Xu et al. 2009; Liu and Shen 2010; Liu, et al. 2010; Wang, et al. 2010, 2012), however most of these studies concentrate on the trends of precipitation variation. In view of this, this paper analysed the proportion of precipitation in different periods of time and the variation of precipitation in space so as to provide some references for the water resources manager.
MATERIALS AND METHOD
Data sources
Daily meteorological data from 58 weather stations in the Haihe River basin and its surrounding areas for 1958–2010 (53 years) was selected as the base data for analysis of the spatial and temporal variation of precipitation. The distribution of the weather stations is shown in Fig. 1.
Method
The Mann-Kendall test method (Wei, 1999; Wang et al. 2011) and precipitation concentration were used to analysis the temporal variation of precipitation and determine precipitation mutations in different time periods. Based on this, the paper analysed the spatial variation of precipitation. The calculation procedure of M-K test method is described in Wei (1999) and Wang et al. (2011).
RESULTS ANALYSIS
Using the single site data, surface rainfall was calculated by the method of tessellation polygons. The annual average precipitation of Haihe River basin is 525.3 mm, which is below the national average annual precipitation (800 mm). In the study area, the maximum annual rainfall is 813.8 mm which is 2.32 times larger than the smallest annual precipitation (350.1mm).
Copyright 2015 IAHS Press
Fig. 1 Distribution of the weather stations.
However, there is an unobvious declining trend on the annual precipitation because the standardized statistic Zc is below 0, but larger than –1.96. The annual precipitation UFk curve shows that after 1968, annual precipitation in Haihe River basin show a sustained reduction trend, but this is not significant. Annual precipitation mutation took place in about 1978, after which the decreasing trend of precipitation increases, but does not exceed а confidence level of 95%.
Fig. 2 M-K test curve of Haihe River basin.
Changes of precipitation concentration
Calculation shows that the annual precipitation concentration is 0.67 and there is a downward trend in it, but it is not significant. The concentration of rainfall varies during the years, alternating between high and low, and bringing some challenges to rainwater use and water resources management in Haihe River basin.
Bing Wang amp; Zhixia Xu
The concentration of precipitation is affected not only by the precipitation of specific periods of time, but also be affected by total precipitation. Therefore, the analysis of monthly precipitation and annual precipitation seem of equal importance. As we know, the proportion of the monthly precipitation is affected not only by monthly precipitation but also by annual precipitation, so this paper analysed the trend of the proportion of the monthly precipitation first, and based on this, the paper anal
剩余内容已隐藏,支付完成后下载完整资料
近53年来海河流域降水的时空变化特征
BING WANG amp; ZHIXIA XU,水资源部,中国水利水电研究所,北京,100038,中国, wangb1215@163.com
摘 要:在气候变化的背景下,海河流域的降水发生了重大变化。根据海河流域及其周边53年58个站的日降水资料,采用ArcGIS平台的M-K检验方法分析了降水的空间和时间变化。结果表明,年降水量呈下降趋势,突变发生后,97.9%的地区降水量为0〜200mm。汛期降水比例呈下降趋势,7月份降水比重明显下降,同时7月降水也呈下降趋势,突变后7月降水量为0〜84 mm。但是,6月份全年降水量和降水比例均呈上升趋势,突变后增加的降水量集中在0-36mm。随着非汛期季节降水量的增加,5月份降水量和降水量均呈上升趋势,突变后增加的降水量集中在0-29 mm。
关键词:海河流域;降水;M-K检验方法;时空变化
概述
海河流域为317 900平方公里,位于112°-120°E和35° - 43°N之间,包括海河和栾河水系。由于其特殊的地理位置(干旱至潮湿的过渡带),其降水的季节和年际差异明显。海河流域经常发生水灾和水资源短缺(Guo and Liu, 2004)。由于降水是供水的主要来源,海河流域降水的时空变化分析非常重要。近年来,有学者对海河流域降水进行了一系列研究(Xu et al. 2009; Liu and Shen 2010; Liu, et al. 2010; Wang, et al. 2010, 2012)这些研究集中在降水变化的趋势。鉴于此,本文分析了不同时期的降水比例和空间降水的变化,为水资源管理者提供了参考。
材料与方法
数据来源
选择1958 - 2010年(53年)海河流域及周边地区58个气象站的每日气象资料作为降水时空变化分析的基础数据。气象站的分布情况如图1所示。
图1 气象站分布图
方法
Mann-Kendall试验方法(Wei, 1999; Wang et al. 2011)和降水浓度用于分析不同时间段降水的时间变化并确定降水突变。 基于此,本文分析了降水的空间变化,Wei(1999)和Wang(2011)等人描述了M-K检验方法的计算过程。
结果分析
使用单站点数据,通过镶嵌多边形的方法计算地表降雨量。 海河流域年平均降水量为525.3mm,低于全国平均降水量(800mm)。 在研究区域,最大年降雨量为813.8mm,比最小年降水量(350.1mm)大2.32倍。
然而,由于标准化统计量Zc低于0,但大于-1.96,年降水量呈下降趋势。 年降水量UFk曲线显示,1968年以后,海河流域年降水量呈下降趋势,但不显著。 年降水突变发生在1978年左右,此后降水量的下降趋势增加,但不超过95%的置信水平。
图2 海河流域M-K检验曲线
降水浓度变化
计算表明,年降水浓度为0.67,呈并不显著的下降趋势。多年的降水浓度多样化,高低交替,给海河流域雨水利用和水资源管理带来了一些挑战。
降水的浓度不仅受到特定时期的降水的影响,而且也受到降水总量的影响。 因此,每月降水和年降水量的分析同样重要。 据了解,月降水量的比例不仅受到月降水量的影响,还受到年降水量的影响,因此本文首先分析了月降水比例的趋势,并在此基础上分析了月降水量变化的对月降水浓度的影响。
不同时期降水的变化
通过M-K检验方法分析月降水量的比例,结果如图3所示。
结果表明,3月、4月、5月、6月、9月和10月的降水比例均呈上升趋势,5月和6月的趋势是很明显的。 但其他月份的降水比例均呈下降趋势,7月份的下降趋势非常明显。
洪水季节的降水比例也用M-K法测定,Zc的结果为-1.95,说明夏季降水比例也有下降趋势,也就是说,非汛期降水的比例呈上升趋势。但是,汛期的下降趋势并不显着,到目前为止可以说,非汛期降水比例的降低是导致降水浓度下降的直接因素。
图3海河流域每月降水比例的M-K检验
3.2.1 时间变化
通过M-K试验方法分析了5月,6月和7月这几个降水量趋势明显的月份。
结果表明:(1)5月份降水量先增加后下降,整体呈上升趋势。1958 - 1970年5月份降水呈现不明显的下降趋势,但在1971-2010年,降水呈现增长趋势。此外,在1990 - 1993年和2005 - 2009年期间,标准化统计超过置信水平的趋势是很明显的,降水突变发生在1982年左右。(2)1975年以后,6月降水持续上升,突变发生在1976年左右。(3)7月份降水总体呈下降趋势,分为两个阶段:第一, 1958-1965年的趋势并不显著;第二,1965 - 2010年降水呈下降趋势。此外,在1982 - 1993年和2001 - 2009年期间,下降趋势非常显著,突变共有两次,分别发生在1978年和1995年。
(a)
(b)
(c)
图四 M-K降水曲线:(a)五月 (b)六月 (c)七月
3.2.2 空间变异 空间分析了5月,6月和7月降水变化明显的几个月份的降水。五月和七月的降水突变分别发生在1982年和1976年。由于6月份有两个突变,我们选择1978年为例。
5月份突变前后降水空间比较表明:(1)突变后的降水量比以前大,而降水量呈现增加趋势的地区面积为28.96平方千米,占流域面积的90.8%。(2)总体而言,增幅从北向南、从西向东逐渐增加。(3)以二级水为单位,对降水的空间变异进行了分析,结果表明:栾河流域和海河北部流域的降水量在0〜20mm之间,从北向南、从西向东逐渐增加。海河南部流域降水呈现增加趋势,但五台山地区降水浓度为0-25 mm,与Tuhaimajiahe 河流域其他地区比较降水量呈明显上升趋势,增幅集中在10-30mm,南北升幅明显增加。
趋势 |
减少 |
增加 |
|||||
降水变率 (mm) |
–1.2~0 |
0~5 |
5~10 |
10~15 |
15~20 |
20~25 |
25~29 |
面积 (104 km2) |
0.06 |
2.76 |
12.39 |
9.51 |
5.88 |
1.14 |
0.03 |
流域面积百分比 (%) |
0.2 |
8.7 |
39.0 |
29.9 |
18.5 |
3.6 |
0.1 |
表1 五月份降水空间变化
(a) (b) (c)
图5 降水的空间比较分析:(a)五月 (b)六月 (c)七月
6月份突变前后降水的空间分析表明:(1)突变后,降水量总体上大于从前,降水量呈上升趋势的面积为29.52平方千米,占流域面积的92.9%。(2)降水量从西向东显著增加,集中在0-29mm,但在不同地区有很大差异。(3)降水量呈下降趋势的大部分地区位于南部,降水量小于10.5mm。(4)突变后,栾河流域和海河北部流域的降水呈现增加趋势,c从西向东呈明显上升趋势。但是,维昌降水量呈下降趋势,减少量为0-10.5mm。此外,海河南面流域,吐海崖河流域的降水量均呈逐年下降趋势。长治新县和邢台降水量均呈下降趋势,减少幅度小于10.5mm。
趋势 |
减少 |
增加 |
|||
降水变率 (mm) |
–10.5~0 |
0~10 |
10~20 |
20~30 |
30~36 |
面积(104 km2) |
2.26 |
9.90 |
14.22 |
5.08 |
0.32 |
流域面积百分比 (%) |
7.1 |
31.1 |
44.8 |
16.0 |
1.0 |
表2 六月份降水空间变化
趋势 |
减少 |
增加 |
|||
降水变率 (mm) |
–84 to –50 |
–50 to –25 |
–25 to 0 |
0~25 |
25~58 |
面积 (104 km2) |
7.17 |
13.32 |
10.56 |
0.50 |
0.22 |
流域面积百分比 (%) |
22.6 |
41.9 |
33.2 |
1.6 |
0.7 |
表3 七月份降水空间变化
7月份突变前后降水空间比较表明:(1)突变后,降水大于从前,降水量总体上大于从前,降水量呈上升趋势的面积为 31.05 平方千米,占流域面积的97.7% 。(2)降水量呈上升趋势的区域大部分位于阳泉和密云附近。(3)降水量从西向东呈现明显的增长趋势,集中在0〜84mm左右。(4)Tuhaimajiahe河流域降水减少50-84 mm,其他第二区降水变化与海河流域相似。
总结
1958 - 2010年海河流域降水分析得出以下结论:
(1)1978年,海河流域年降水量呈显著下降趋势,降水突变时有发生。突变后,整个流域降水量呈下降趋势,空间分布差异较大。
(2)海河流域降水浓度呈下降趋势,但不明显。 5月和6月的降水比例和5月和6月的降水量均呈现明显的上升趋势。然而,7月份全年降水量和降水比例均呈现明显的下降趋势。 5月和6月降水突变后,降水从西向东逐渐增加,增幅分别在0-25 mm和0-35 mm之间。但7月份降水明显减少,整体降水从西向东逐渐下降,降幅集中在0-84mm之间。
参考文献
Guo, F. and Liu, G. (2004) Flood resources utilization analysis in Haihe Watershed. Journal of
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[25224],资料为PDF文档或Word文档,PDF文档可免费转换为Word