南京大气中二氧化硫氧化的初步研究外文翻译资料
2022-12-22 17:36:29
Yungang Wang a, Qi Ying b, Jianlin Hu c,⁎, Hongliang Zhang d,⁎
a Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 9472 0, USA b Department of Civil Engineering, Texas Aamp;M University, College Station, TX 77843, USA c Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616, USA d Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
a r t i c l e |
i n f o |
a b s t r a c t |
Article history: Received 30 June 2014 Accepted 29 August 2014 Available online xxxx Keywords: Spatial variation Temporal variation Criteria pollutants PM2.5 Provincial capital cities China |
Long-term air pollution data with high temporal and spatial resolutions are needed to support the research of physical and chemical processes that affect the air quality, and the corresponding health risks. However, such datasets were not available in China until recently. For the first time, this study examines the spatial and temporal variations of PM2.5, PM10, CO, SO2, NO2, and 8 h O3 in 31 capital cities in China between March 2013 and February 2014 using hourly data released by the Ministry of Environmental Protection (MEP) of China. The annual mean concentrations of PM2.5 and PM10 exceeded the Chinese Ambient Air Quality Standards (CAAQS), Grade I standards (15 and 40 mu;g/m3 for PM2.5 and PM10, respectively) for all cities, and only Haikou, Fuzhou and Lasa met the CAAQS Grade II standards (35 and 70 mu;g/m3 for PM2.5 and PM10, respectively). Observed PM2.5, PM10, CO and SO2 concentrations were higher in cities located in the North region than those in the West and the SouthEast regions. The number of non-attainment days was highest in the winter, but high pollution days were also frequently observed in the South-East region during the fall and in the West region during the spring. PM2.5 was the largest contributor to the air pollution in China based on the number of non-attainment days, followed by PM10, and O3. Strong correlation was found between different pollutants except for O3. These results suggest great impacts of coal combustion and biomass burning in the winter, long range transport of windblown dust in the spring, and secondary aerosol formation throughout the year. Current air pollution in China is caused by multiple pollutants, with great variations among different regions and different seasons. Future studies should focus on improving the understanding of the associations between air quality and meteorological conditions, variations of emissions in different regions, and transport and transformation of pollutants in both intra- and inter-regional contexts. copy; 2014 Elsevier Ltd. All rights reserved. |
Introduction
Air pollution in China receives increasing attention by the general public as well as scientific researchers and policy makers due to frequent occurrences of severe regional and inter-regional air pollution events. Air pollution data with high spatial and temporal resolutions are needed to accurately evaluate the health risks associated with air pollutant exposure. However, open-access air pollution data published by the Ministry of Environmental Protection (MEP) of China and local environmental protection bureaus were historically scarce. Also these data are only limited to a generalized daily Air Pollution Index (API) based on the highest of the three criteria pollutants including sulfur dioxide (SO2), nitrogen dioxide (NO2) and inhalable particles (PM10, particulate matter with aerodynamic diameter less than 10 mu;m). Although concentrations of other air pollutants have been reported in scientific
⁎ Corresponding authors. E-mail addresses: jjlhu@ucdavis.edu (J. Hu), hlzhang@lsu.edu (H. Zhang). http://dx.doi.org/10.1016/j.envint.2014.08.016 0160-4120/copy; 2014 Elsevier Ltd. All rights reserved. |
literature for a few urban regions such as the Pearl River Delta (PRD) (Louie et al., 2005), the Beijing metropolitan area (Zhang et al., 2012b) and some other major cities (Han et al., 2010; Peng et al., 2013; Wang et al., 2014a; Wang et al., 2014b), it is difficult to extrapolate these data to other regions due to complex terrain, meteorological conditions and emission distributions (Li et al., 2014). Even for the highly instrumented regions such as PRD, continuous data with high temporal resolution were generally unavailable (Ying et al., 2014; Zhang et al., 2012a). These data are useful for exposure assessments and investigation of pollution formation/transport mechanisms using statistical methods or air quality models. It is also difficult to scientifically assess and for the public to perceive the effectiveness of proposed air pollution measures without detailed records of the spatial and temporal variations of air pollutant concentrations.
A number of previous studies on temporal and spatial variations of concentrations of air pollutants in China have been reported, but detailed observational data were scarce. Some of them are limited within one single city. For example, Zhao et al. (2014) used fine particles (PM2.5, particulate matter with aerodynamic diameter less than 2.5 mu;m) and PM10 data collected at 30 sites in Beijing during the winter and the spring of 2012 and 2013 and applied the or
剩余内容已隐藏,支付完成后下载完整资料
Yungang Wang a, Qi Ying b, Jianlin Hu c,⁎, Hongliang Zhang d,⁎
a环境能源技术司,劳伦斯·伯克利国家实验室,美国加州大学94720
b德克萨斯aamp;m大学土木工程系,学院站,tx77843,美国
c大学土木与环境工程系加州,戴维斯,戴维斯,ca95616,美国
d路易斯安那州立大学土木与环境工程系,巴吞鲁日,洛杉矶70803,美国
文章信息 |
抽象 |
文章历史: 2014年6月30日收到 2014年8月29日 接受在线提供XXXX 关键字: 空间变化 时间变化标准污染物 PM2。5 省级省会城市 中国 |
需要具有高时空分辨率的长期空气污染数据来支持影响空气质量的物理和化学过程的研究以及相应的健康风险。但是,直到最近才在中国提供此类数据集。本研究首次利用该部发布的小时数据,分析了2013年3月至2014年2月期间中国31个首府城市PM2.5,PM10,CO,SO2,NO2和8h O3的时空变化。中国的环境保护(MEP)。 PM2.5和PM10的年平均浓度超过了所有城市的中国环境空气质量标准(CAAQS),I级标准(PM2.5和PM10分别为15和40mu;g/ m3),仅海口,福州和Lasa符合CAAQS II级标准(分别为PM2.5和PM10分别为35和70mu;g/ m3)。北部地区城市的PM2.5,PM10,CO和SO2浓度高于西部和东部地区。冬季的未达标天数最多,但在秋季期间东南地区和春季期间西部地区也经常观察到高污染日。根据未达标天数,PM2.5是中国空气污染的最大贡献者,其次是PM10和O3。除O3外,不同污染物之间存在很强的相关性。这些结果表明,冬季煤炭燃烧和生物质燃烧,春季风吹尘埃的长距离运输以及全年的二次气溶胶形成都会产生巨大影响。中国目前的空气污染是由多种污染物引起的,不同地区和不同季节之间差异很大。未来的研究应侧重于提高对空气质量与气象条件之间关系的理解,不同区域排放的变化以及区域内和区域间污染物的运输和转化。 |
1.简介由于频繁发生严重的区域和区域间空气污染事件,中国的空气污染越来越受到公众以及科研人员和政策制定者的关注。 需要具有高空间和时间分辨率的空气污染数据来准确评估与空气污染物暴露相关的健康风险。 然而,中国环境保护部(MEP)和当地环境保护局公布的开放式空气污染数据在历史上是稀缺的。 这些数据仅限于基于三种标准污染物中最高的一般空气污染指数(API),包括二氧化硫(SO2),二氧化氮(NO2)和可吸入颗粒(PM10,空气动力学直径小于 10mu;m)。 虽然科学报道了其他空气污染物的浓度一些城市地区的文献,如珠江三角洲(PRD)(Louie等,2005),北京都市圈(Zhang et al。,2012b)和其他一些主要城市(Han et al。,2010; Peng) et al。,2013; Wang et al。,2014a; Wang et al。,2014b),由于地形复杂,气象条件和排放分布,很难将这些数据外推到其他地区(Li et al。,2014)。 即使对于诸如珠三角等高度仪器化的区域,通常也不能获得具有高时间分辨率的连续数据(Ying等人,2014; Zhang等人,2012a)。 这些数据可用于使用统计方法或空气质量模型进行暴露评估和污染形成/运输机制调查。 如果没有关于空气污染物浓度的空间和时间变化的详细记录,也很难科学地评估并让公众认识到拟议的空气污染措施的有效性。
之前有一些关于中国大气污染物浓度时空变化的研究报告,但详细的观测数据很少。其中一些仅限于一个城市。例如,赵等人。 (2014)在冬季和2012年春季使用的细颗粒物(PM2.5,空气动力学直径小于2.5mu;m的颗粒物质)和北京30个地点收集的PM10数据,并应用普通Kriging插值法显示PM山区附近北部的浓度较低,城市地区的南部较高。市区的西部地区的浓度高于城市的东部。峰值PM浓度发生在1月份。北京的PM浓度与风速呈负相关,与相对湿度呈正相关。还报告了具有更大空间覆盖率的分析。例如,Qu等人。 (2010)研究了从2000年到2006年在83个城市报告的API记录重建的PM10的时空分布。结果发现,中国北方城市PM10浓度最高,华南地区最低。北方城市呈下降趋势,但其他地区的城市未发现重大变化。与其他研究一致,PM10浓度在冬季达到峰值,在夏季最低。还报告了多种标准污染物的时空分布研究。 Chai等人。 (2014)利用2011年8月至2012年2月间收集的数据,报告了中国26个城市6种标准污染物的时空变化研究.16个城市有6个标准污染物的数据,其余10个城市只有SO2,NO2和PM10。除臭氧(O3)外的所有污染物在冬季都显示出较高的浓度,而在夏季则显示出较低的浓度。北方城市的一氧化碳(CO)和二氧化硫以及PM2.5和PM10要高得多,但O3和NO2在北方和南方城市之间没有显着差异。 Ji等。 (2012)使用在24个站点收集的PM10,SO2和NOx数据以及在5个站点收集的PM2.5数据,对2009年10月和11月中国北部两个严重的区域PM事件进行了更详细的分析。结果发现,高PM10事件是区域性的,而不是在大城市中被隔离。在高PM事件期间PM2.5 / PM10比率增加。对天气天气模式和背向轨迹的分析表明,由低压系统引起的轻风,地表反转温度升高和低混合高度是造成主要污染物微弱稀释和二次PM形成增强的原因。虽然这些研究提供了有价值的见解,但它们都没有涵盖全年的PM2.5数据,其中很少包括经济欠发达地区的城市,如中国的西北和西南。本研究的目的是根据一年(2013年3月至2014年2月)正式公布的数据,检验中国PM2.5,PM10,CO,SO2,NO2和8h O3的时空变化。省会城市。研究了这些城市的空气质量达标条件,确定了超过环境空气质量标准的天数的主导因素。研究了不同污染物的相互关联,以更全面地了解中国的空气污染现状。2.方法为了评估中国的整体空气质量状况,我们分析了中国31个省会城市(台北,香港和中国除外)的PM2.5,PM10,CO,SO2,NO2和8h O3的一年长环境监测数据。澳门)。为了对比空气质量的区域差异,31个城市进一步分为三个一般区域,即北部,东南部和西部。表1列出了城市,其位置如图S1所示。 31个首府城市的总人口为2013年为2.31亿,占中国总人口的17%。31个省会城市SO2,NO2,PM2.5,PM10,CO和O3的实时小时浓度均来自中国环境监测中心出版网站(http:// 113.108.142.147:20035/emcpublish) /)。 2013年1月,环境保护部开始通过网站在74个主要城市的个别监测点发布六种标准污染物的每小时空气质量数据。该数据库对于提供更详细的数据图表至关重要。
表1 31个省会城市的区域类别、人口、现有的aqm地点和未达到的天数
Region category |
Population (million) |
# of AQM sites |
# of non-attainment daysa Mar 1, 2013–Feb 28, 2014 |
|
Shijiazhuang (SZ) |
North |
10.05 |
8 |
261/303 |
Jinan (JN) |
North |
6.09 |
8 |
239/312 |
Tianjin (TJ) |
North |
9.93 |
15 |
199/341 |
Beijing (BJ) |
North |
12.97 |
13 |
182/345 |
Zhengzhou (ZZ) |
North |
10.73 |
9 |
171/299 |
Taiyuan (TY) |
North |
3.66 |
9 |
136/307 |
Huhehaote (HT) |
North |
2.3 |
8 |
132/312 |
Shenyang (SY) |
North |
7.25 |
12 |
106/307 |
Changchun (CC) |
North |
7.57 |
10 |
98/330 |
Haerbin (HB) |
North |
9.94 |
12 |
97/321 |
Wuhan (WH) |
South-East |
8.22 |
10 |
193/306 |
Hefei (HF) |
South-East |
7.11 |
10 |
149/320 |
Changsha (CS) |
South-East |
6.61 |
10 |
144/331 |
Nanjing (NJ) |
South-East |
6.38 |
9 |
126/304 |
Nanchang (NC) |
South-East |
5.08 |
9 |
105/305 |
Shanghai (SH) |
South-East |
14.27 |
11 |
100/342 |
Hangzhou (HZ) |
South-East |
7.01 |
11 |
99/321 |
Nanning (NN) |
South-East |
7.14 |
8 |
94/307 |
Guangzhou (GZ) |
South-East |
8.22 |
12 |
89/329 |
Haikou (HK) |
South-East |
1.62 |
5 |
21/311 |
Fuzhou (FZ) |
South-East<!-- 剩余内容已隐藏,支付完成后下载完整资料 资料编号:[21007],资料为PDF文档或Word文档,PDF文档可免费转换为Word |