登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 管理学类 > 信息管理与信息系统 > 正文

基于携程网的酒店数据分析与用户推荐研究毕业论文

 2021-11-07 21:00:18  

摘 要

目前的疫情情况是国内越来越好,而国外则并不适合出行,此外在疫情期间的人们由于疫情的原因在家中的时间较长,因此在疫情接近尾声时进行国内旅游是一个不错的选择。而在旅行中不可避免需要考虑到酒店的选择,一个称心如意的酒店会使得旅行体验锦上添花,但是这就涉及到选择是否符合消费者期望的问题,对于大多数的消费者而言,在眼花缭乱的酒店订购平台的千篇一律的宣传模式中,很难准确的挑选出符合自己实际情况的酒店,而目前的国内酒店订购系统中,只是初步的将酒店自己的标签与用户的评价,星级展示给用户,并没有发掘这些数据背后的实质内容,大部分的用户本身也并没有很敏感的数据性,因而不会掌握太多的数据分析与搜集处理技术,因而鲜有人注意到这些数据的关联性与数据汇总起来可以蕴含的惊人信息,随着时间的推移,人们对于信息,数据的认识与关注度越来越高,大数据相关越来越成为热门,而这些数据在被进行一定的处理之前是杂乱无章的,亟需应用一定的技术与手段即将数据搜集到一起,进行合理的处理,并展示出来,于是就需要用到数据可视化与数据分析等方面的知识来进行操作。根据上述描述本设计想要基于携程网及其附属平台来进行旅游中酒店数据的分析,推荐给用户,以此来供用户更好的了解酒店的详细信息,真实情况与实际体验,为用户选择酒店时提供实质性参考,给出目标,不论是对于用户而言的一则评论,还是对于酒店而言的一组产品数据,在数量的累积下都会有质的变化,此项目就是将质的变化发掘出来,分别从酒店为用户提供服务和用户挑选酒店两个角度进行研究分析,并使得得出的结论同时可以满足二者相互的需求关系,对于用户来说是更加客观的呈现了自己的需求供给关系,对于酒店来说可以更加准确找到自己的适用人群,使得用户与产品的距离更进一步,优化了用户于产品的双向选择服务,并合理利用了繁于处理的宝贵资源。

本文采用python语言作为与其框架结合,对数进行爬取,整理,分析,并可视化展示出来,配置多种框架,充分利用好python丰富的第三方框架来更加契合的将数据展示出来,并且在结合web前端的基础之上让用户能够更简单,更直观的看到数据的整合与分析结果,更加容易通过这些数据的对比来满足自己的需求,选择和自己匹配度高的产品。因为目前来看国内的电商平台百家争鸣,加之我国人口基数大,网络化广泛,故十分适合进行统计数据并进行分析挖掘,不乏多种多样的商品会有着不同消费倾向与挑选着重点的多种用户。而在语言性质方面,python拥有天然的爬虫语言优势,加之其完善的框架使得数据在获取与处理方面更加便利与高效,将数据背后的异同之处发掘出来,进行分析,最终以更加直观的图像形式展示出来,发掘数据的重要信息。综上我认为本文的研究内容具备一定的研究价值。

关键词:爬虫 数据处理 数据分析 数据可视化

Abstract

At present, the epidemic situation is getting better and better at home, while it is not suitable for travel abroad. In addition, people in the epidemic period spend a long time at home due to the epidemic, so it is a good choice to travel at home when the epidemic is near the end. In the travel, it is inevitable to consider the choice of hotels. A satisfactory hotel will make the travel experience more colorful. But this involves the question of whether the choice meets the expectations of consumers. For most consumers, it is difficult to accurately choose the right one in accordance with their actual situation in the dazzling Hotel ordering platform's stereotyped propaganda mode Hotels, however, in the current domestic hotel ordering system, only the initial presentation of the hotel's own label and user's evaluation, star rating to users, did not explore the substance behind these data, and most users themselves did not have very sensitive data, so they could not master too many data analysis and collection processing technologies, so few people noticed these data The combination of relevance and data can contain amazing information. With the passage of time, people's awareness and concern for information and data are getting higher and higher, and big data correlation is becoming more and more popular. However, these data are disordered before being processed. It is urgent to apply certain technologies and means to collect data together for reasonable processing So we need to use the knowledge of data visualization and data analysis to operate. According to the above description, the design wants to analyze the hotel data in tourism based on Ctrip and its affiliated platform, recommend it to users, so that users can better understand the detailed information, real situation and actual experience of the hotel, provide substantive reference for users when choosing a hotel, and give the goal, no matter for users or for hotels A group of product data will have qualitative changes under the accumulation of quantity. This project is to explore the qualitative changes, and carry out research and analysis from the perspectives of providing services for users and selecting hotels for users respectively, so that the conclusions can meet the mutual demand relationship between the two at the same time, which is more objective for users to present their own demand supply relationship, For the hotel, it can find its own applicable population more accurately, make the distance between users and products further, optimize the two-way selection service of users for products, and make reasonable use of the precious resources that are too complex to deal with.

In this paper, python language is used as a combination of its framework. It crawls, sorts, analyzes, visualizes, configures a variety of frameworks, makes full use of Python's rich third frame to display data more coherently, and based on the combination of Web front-end, users can see the integration and analysis results of data more simply and intuitively It is easy to meet their own needs by comparing these data, and choose products with high matching degree. Because at present, there are hundreds of competing e-commerce platforms in China, and China has a large population base and wide network, so it is very suitable for statistical data and analysis and mining. There are many kinds of commodities with different consumption trends and key users. In terms of language nature, python has the advantages of natural crawler language, and its perfect framework makes data acquisition and processing more convenient and efficient. The similarities and differences behind the data are explored, analyzed, and finally displayed in a more intuitive image form to explore the important information of the data. In conclusion, I think the research content of this paper has certain research value.

Key words: reptile data processing data analysis data visualization

目录

第1章 绪论 1

1.1研究背景 1

1.2研究意义 1

1.2.1理论意义 1

1.2.2实际意义 2

1.3国内外研究现状 2

1.3.1国外研究现状 2

1.3.2国内研究现状 3

1.4研究内容与研究步骤 4

第2章 基于酒店订购平台的数据分析研究 4

2.1 研究问题意义 4

2.1.1便利性 4

2.1.2 实用性 5

2.2 技术路线 5

2.2.1 模型设计 5

2.2.2 基本技术 6

第 3 章 数据分析实施过程 6

3.1环境搭建与第三方库的配置 6

3.1.1创建虚拟环境 6

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图