分级多孔氮化碳材料的构筑及其CO2吸附性能研究任务书
2020-06-08 21:15:26
1. 毕业设计(论文)的内容和要求
1.查阅、整理文献资料,加深对自己课题的理解,并撰写开题报告; 2.要求学生对无机材料制备基础、仪器分析等学科复习,从而对以后实验、分析打下基础; 3.通过查阅文献,进行分级多孔氮化碳材料的构筑; 4.将已构筑出的效果较佳的分级多孔氮化碳材料应用于气体分离,考察其在一系列反应中的分离能力,从而获得高吸附量和高扩散速率的氮化碳杂化材料; 5.整理数据,撰写论文。
2. 参考文献
[1] Chen, J., Yang, J., Hu, G.S., Hu, X., Li, Z.M., Shen, S.W., Radosz, M., Fan, M.H. Enhanced CO2 capture capacity of nitrogen-doped biomass-dericed porous carbons [J]. ACS Sustain. Chem. Eng., 2016, 4: 1439-1445. [2] Kim, H.S., Kang, M.S., Yoo, W.C. Highly enhanced gas sorption capacities of N-doped porous carbon spheres by hot NH3 and CO2 treatments [J]. J. Phys. Chem. C., 2015, 119: 28512-28522. [3] Zhou, S.H., Xu, H.B., Yuan, Q.H., Shen, H.J., Zhu, X.F., Liu, Y., Gan, W. N-doped ordered mesoporous carbon originated from a green biological dye for electrochemical sensing and high-pressure CO2 storage [J]. ACS Appl. Mater. Inter., 2016, 8: 918-926. [4] Liang, Q.H., Li, Z., Huang, Z.H., Kang, F.Y., Yang, Q.H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production [J]. Adv. Funct. Mater., 2015, 25: 6885-6892. [5] Zheng, D.D., Cao X.N., Wang, X.C. Precise Janus surface engineering of a hollow carbon nitride structure to promote photoredox catalysis [J]. Angew. Chem. Int. Ed., 2016, dio:10.102/anie.201606102 and 10.102/ange.201606102. [6] Lakhi, K.S., Baskar, A.V., Zaidi, J.S.M., Al-Deyab, S.S., Newehy, M.E., Choy, J.H., Vinu, A. Morphological control of mesoporous CN based hybrid materials and their excellent CO2 adsorption capacity[J]. RSC Adv., 2015, 5, 40183. [7] Oh, Y., Le, V.D., Maiti, U.N., Hwang, J.O., Park, W.J., Lim, J., Lee, K.E., Bae, Y.S., Kim, Y.H., Kim, S.O. Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride [J]. ACS Nano, 2015, 9, 9148-9157. [8] Lakhi, K.S., Cha, W.S., Joseph, S., Wood, B.J., Aldeyab, S.S., Lawrence, G., Choy, J.H., Vinu, A. Cage type mesoporous carbon nitride with large mesopores for CO2 caputure [J]. Catal. Today, 2015, 243: 209-217. [9] Deng, Q.F., Liu, L., Lin, X.Z., Du, G.H., Liu, Y.P., Yuan, Z.Y. Synthesis and CO2 capture properties of mesoporous caebon nitride materials [J]. Chem. Eng. J., 2012, 203: 63-70. [10] Song, J., Shen, W.Z., Wang, J.G., Fan, W.B. Superior carbon-based CO2 adsorbents prepared from poplar anthers [J]. Carbon, 2014, 69: 255-263. [11] Wickramaratne, N., Jaroniec, M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres [J]. J. Mater. Chem. A, 2013, 1: 112-116. [12] Li, Q., Yang, J.P., Feng, D., Wu, Z.X., Wu, Q.L., Park, S.S., Ha, S.S., Zhao, D.Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 carpture [J]. Nano Res., 2010, 3: 632-642. [13] Li, D., Chen, Y.L., Zheng, M., Zhao, H.F., Zhao, Y.F., Sun, Z.C. Hierarchically structured porous nitrogen-doped carbon for highly selective CO2 capture [J]. ACS Sustain. Chem. Eng., 2016, 4: 298-304. [14] To, J.W.F., He, J.J., Mei, J.G., Haghpanah, R., Chen, Z., Kurosawa, T., Chen, S.C., Bae, W.G., Pan, L.J., Tok, J.B.H., Wilcox, J., Bao, Z.N. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor [J]. J. Am. Chem. Soc., 2016, 138: 1001-1009. [15] Wei, H., Wu, X.S., Zou, L., Wen, G.Y., Liu, D.Y., Qiao, Y. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells [J]. J. Power Sources, 2016, 315: 192-198. [16] Ding, Y.X., Su, D.S. Host-guest nanocomposites of multiwalled carbon nanotubes and ionic liquids with controllable composition [J]. ChemSusChem., 2014, 7: 1542-1546. [17] Arellano, I.H., Madani, S.H., Huang, J.H., Pendleton, P. Carbon dioxide adsorption by zinc-functionalized ionic liquid impregnated into bio-templated mesoporous silica beads [J]. Chem. Eng. J., 2016, 283: 692-702. [18] Ding, J., Liu, Q.Q., Zhang, Z.Y., Liu, X., Zhao. J.Q., Cheng, S.B., Zong, B.N., Dai, W.L. Carbon nitride nanosheets decorated with WO3 nanorods: ultrasonic assisted facile synthesis and catalytic application in the green manufacture of dialdehydes [J]. Appl. Catal. B: Enviorn., 2015, 165: 511-518. [19] 戴维林, 丁靖, 刘倩倩, 王力, 刘欣. 功能性离子液体修饰的石墨相C3N4催化材料及其制备方法和应用. 中国发明专利, CN104475153A, 2015-04-01. [20] Liu, Q.Q., Ding, J., Chai, Y.Y., Zhao, J.Q., Cheng, S.B., Zong, B.N., Dai, W.L. Unprecedented enhancement in visible-light-driven photoactivity of modified graphitic C3N4 by coupling with H2WO4 [J]. Environ. Chem. Eng. J., 2015, 3: 1072-1080. [21] Tan, X., Kou, L.Z., Tahini, H.A., Sean, C.S. Conductive graphitic carbon nitride as an ideal material for electrocatalytically switchable CO2 capture [J]. Sci. Rep., 2016, doi: 10.1038/srep17636. [22] Jiao, Y., Zheng, Y., Sean, C.S., Du, A.J., Zhu, Z.H. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen [J]. ChemSusChem., 2014, 7: 435-441.
3. 毕业设计(论文)进程安排
2017年2月20日-3月20日 查阅课题相关文献资料,确定实验思路,撰写开题报告。
3月21日-5月25日 进行分级多孔氮化碳材料的构筑并将已构筑出的效果较佳的分级多孔氮化碳材料应用于气体分离,考察其在一系列反应中的分离能力,从而获得高吸附量和高扩散速率的氮化碳杂化材料。