登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 化学工程与工艺 > 正文

调控钙钛矿氧化物作为高效的电解水催化剂任务书

 2020-06-24 19:46:36  

1. 毕业设计(论文)的内容和要求

1. 学会采用各种文献检索手段对特定课题进行检索的方法,培养阅读中外文献资料的能力。

2. 培养综合运用所学专业知识分析、解决实际问题的能力。

3.培养独立开展实验研究、独立思考和分析问题与现象,并解决问题,完成课题的工作能力。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] 祁万年. 我国新能源发电制氢储能技术研究 [J]. 科技创新导报, 2012, (27): 38-40. [2] 穆亚玲, 王香爱. 氢能源研究现状. 化工时刊, 2008, 22(10): 64-65. [3] M W Kanan, D G Nocera. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2 [J]. Science, 2008, 321(5892): 1072-1075. [4] K Zeng, D Zhang. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications [J]. Prog Energy Combust Sci, 2001, 36(3): 307-326. [5] N Armaroli, V Balzani. The Hydrogen Issue [J]. ChemSusChem, 2011, 4(1): 21~36. [6] M D Symes, L Cronin. Decoupling Hydrogen and Oxygen Evolution During Electrolytic Water Splitting Using an Electron-Coupled-Proton Buffer [J]. Nature Chem, 2013, 5(5): 403-409. [7] Yang Z, Zhang J, M.C.W.Kintner-Meyer, et al. Electrochemical Energy Storage for Green Grid [J]. Chemical Review, 2011, 111: 3577-3613. [8] Risch M, Stoerzinger K A, Maruyama S, et al. La0.8Sr0.2MnO3#8722;δ Decorated with Ba0.5Sr0.5Co0.8Fe0.2O3#8722; δ: A Bifunctional Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity [J]. Journal of the American Chemical Society, 2014, 136: 5229-5232. [9] Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped Carbon Nanomaterials as Non-metal Electrocatalysts for Water Oxidation [J]. Nature Communications, 2013, 1: 4-4. [10] J Wang, W Cui, Q Liu, et al. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting [J]. Adv Mater, 2016, 28(2): 215-230. [11] Y Lee, J Suntivich, K J May, et al. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions [J]. J Phys Chem Lett, 2012, 3(3): 399~404. [12] N Krstajic, S Trasatti. Cathodic Behavior of RuO2-Doped Ni/Co3O4 Electrodes in Alkaline Solutions: hydrogen evolution [J]. J Appl Electrochem, 1998, 28(12): 2675~2681. [13] M Tsionsky, O Lev. Investigation of the Kinetics and Mechanism of Co-Porphyrin Catalyzed Oxygen Reduction by Hydrophobic Carbon-Ceramic Electrodes [J]. J Electrochem Soc, 1995, 142(7): 2132~2138. [14] N Heller-ling, M Prestat, J L Gautier, et al. Oxygen Electroreduction Mechanism at Thin NixCo3-xO4 Spinel Films in a Double Channel Electrode Flow Cell (DCEFC) [J]. Electrochim Acta, 1997, 42(2): 197~202. [15] J Prakash, D A Tryk, E B Yeager. Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts [J]. J Electrochem Soc, 1999, 146(11): 4145~4151. [16] K Suresh, T S Panchapagesan, K C Patil. Synthesis and Properties of La1-xSrxFeO3 [J]. Solid State Ionics, 1999, 126(3): 299~305. [17] E Fabbri, A Habereder, K Waltar, et al. Developments and Perspectives of Oxide-Based Catalysts for the Oxygen Evolution Reaction [J]. Catal Sci Technol, 2014, 4(11): 3800~3821. [18] R H E Van Doorn, A J Burggraaf. Structural Aspects of the Ionic Conductivity of La1-xSrxCoO3-δ [J]. Solid State Ionics, 2000, 128(1): 65~78. [19] Rossmeisl J, Logadottir A, Norskov J K. Electrolysis of Water on (Oxidized) Metal Surfaces [J]. Chemical Physics, 2005, 319: 178-184. [20] Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of Water on Oxide Surfaces [J]. Journal of Electroanalytical Chemistry, 2007, 607: 83-89. [21] Hansen H A, Man I C, Studt F, et al. Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces [J]. Physical Chemistry Chemical Physics, 2010, 12: 283-290. [22] Man I C, Su H, Federico C, et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces [J]. ChemCatChem, 2011, 3: 1159-1165. [23] Dau H, Limberg C, Reier T, et al. The Mechanism of Water Oxidation:from Electrolysis via Homogeneous to Biological Catalysis [J]. ChemCatChem, 2010, 2: 724-761. [24] Jin S, May K J, Gasteiger H A, et al. ChemInform Abstract: A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles [J]. Science, 2011, 334: 1383-1385. [25] 黄庆华,李振亚,王为. 电池用氧电极催化剂的研究现状 [J]. 电源技术,2003,27。

[26] Y Nishihata, J Mizuki, T Akao, ed al. Self-Regeneration of a Pd-Perovskite Catalyst for Automotive Emissions Control [J]. Nature, 2002, 418(6894): 164-167. [27] Z P Shao, W S Yang, Y Cong, ed al. Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ Oxygen Membrane [J]. J Membr Sci, 2000, 172(1-2): 177-188. [28] Z P Shao, S M Haile A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells [J]. Nature, 2004, 431(7005): 170-173. [29] J Suntivich, H A Gasteiger, N Yabuuchi, et al. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries [J]. Nature Chem, 2011, 3(7): 546-550. [30] J B Goodenough, R Manoharan, M Paranthaman. Surface Protonation and Electrochemical Activity of Oxides in Aqueous-Solution [J]. J Am Chem Soc, 1990, 112(6): 2076-2082. [31] J. Bockris, T. Otagawa, J. Phy. Chem. 1983, 87, 2960. [32] J. O. M. Bockris, J. Electrochem. Soc. 1984, 131, 290. [33] J. I. Jung, H. Y. Jeong, J. S. Lee, M. G. Kim, J. Cho, Angew. Chem. 2014, 53, 4582. [34] J. Kim, X. Yin, K. C. Tsao, S. Fang, H. Yang, J. Am. Chem. Soc. 2014, 136, 14646. [35] Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao, Y. Lin, W. Chu, Z. Peng, C. Wu, Y. Xie, Adv Mater 2015, 27, 5989. [36] Y. Zhu, W. Zhou, Z. G. Chen, Y. Chen, C. Su, M. O. Tade, Z. Shao, Angew. Chem. 2015, 54, 3897. [37] S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama, S. Mori, Nat. Commun. 2015, 6, 8249. [38] X. Cheng, E. Fabbri, M. Nachtegaal, I. E. Castelli, M. El Kazzi, R. Haumont, N. Marzari, T. J. Schmidt, Chem. Mat. 2015, 27, 7662. [39] Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu, Z. Shao, Chem. Mat. 2016, 28, 1691. [40] D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, J. B. Goodenough, J. Mater. Chem. A 2015, 3, 9421. [41] W. Zhou, M. Zhao, F. Liang, S. C. Smith, Z. Zhu, Mater. Horiz. 2015, 2, 495. [42] S. Malkhandi, P. Trinh, A. K. Manohar, A. Manivannan, M. Balasubramanian, G. K. S. Prakash, S. R. Narayanan, J. Phys. Chem. C 2015, 119, 8004. [43] Y. Yang, W. Zhou, R. Liu, M. Li, T. E. Rufford, Z. Zhu, ChemElectroChem 2015, 2, 200. [44] Y. Wang, J. Ren, Y. Wang, F. Zhang, X. Liu, Y. Guo, G, Lu, J. Phys. Chem. C 2008, 112, 15293. [45] Z P Shao, W Zhou, Z H Zhu. Advanced Synthesis of Materials for Intermediate-Temperature Solid Oxide Fuel Cells [J]. Prog Mater Sci, 2012, 57(4): 804~874. [46] W Zhou, Z P Shao, W Q Jin. Synthesis of Nanocrystalline Conducting Composite Oxides Based on a Non-ion Selective Combined Complexing Process for Functional Applications [J]. J Alloys Compd, 2006, 426(1): 368~374.

3. 毕业设计(论文)进程安排

1.1-2周:确定毕业论文选题,拟订论文开题报告书;撰写论文大纲,并根据相关主题进行文献的收集和分析; 2.3-5周:熟悉实验室的仪器设备,掌握基本的制备过程#8212;#8212;催化剂的合成、电极的制备。

3.5-7周:采用xrd、sem、bet、tem等对粉体进行表征,测试催化剂的各种基本性质。

4.8-1-0周:进行电解水性能 5.11-13周:分析整理数 5.14-17周:撰写毕业论文,准备答辩。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图