登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 化学化工与生命科学类 > 化学工程与工艺 > 正文

“背包式”反应精馏生产乙酸环己酯过程模拟研究毕业论文

 2022-01-04 20:35:20  

论文总字数:21224字

摘 要

环己醇是一种具有广泛应用的有机溶剂与化工中间体,市场需求量大。目前生产环己醇的工艺主要为环己烯直接水合法,但是该工艺存在需水量大、单程转化比例低、能耗高等缺点。对此,一种以羧酸为夹带剂的酯化-水解(加氢)两步法生产环己醇工艺引起了研究者广泛关注,该工艺具有原子经济性好、环己醇收率高等优点。本文以廉价稳定的乙酸作为反应夹带剂,针对环己烯与醋酸酯化反应存在热力学平衡,同时体系具有反应温度与精馏温度不匹配的特征,因此采用“背包式”反应精馏技术强化该过程,将反应器与精馏塔最佳温度独立设定,从而提高原料转化率。

论文首先基于Aspen Plus软件建立了“背包式”反应精馏生产乙酸环己酯的工艺模型,探究了精馏压力对塔顶、塔釜温度的影响,确定精馏最佳操作压力为30kPa,“背包式”反应精馏集成方式为常压反应与减压精馏相集成。在此基础上,固定乙酸进料量为10kmol/h,环己烯、环己烷进料量为10kmol/h和2.5kmol/h,规定新鲜环己烯转化率不低于95%,塔釜产品乙酸环己酯含量不低于99.5%(w),考察了集成过程主要结构参数与操作参数对年度总花费(TAC)的影响。模拟结果显示,模拟得到的最佳的工艺操作条件为:回流比11.2、再沸器热负荷230kW,反应精馏塔理论板数11块,催化剂总装填量为1700kg,精馏段塔板数3块,提馏段塔板数4块,侧反应器2台,侧反应器之间间隔塔板数为1块,催化剂在第一台侧反应器(上)装填量500kg,催化剂在第二台侧反应器(下)装填量1200kg。在此条件下,“背包式”反应精馏集成过程具有最小的TAC约为2.43×106 Yuan/a。

上述研究结果为“背包式”反应精馏集成过程生产乙酸环己酯的工艺放大奠定了基础。

关键词:环己烯 环己醇 乙酸环己酯 过程模拟 “背包式”反应精馏

Simulation of side-reactor column configuration process for cyclohexyl acetate production

Abstract

Cyclohexanol is a widely used organic solvent and chemical intermediates. At present, cyclohexanol production process is mainly cyclohexene direct water method, but this process has the disadvantages of large water demand, low conversion rate for single trip and high energy consumption. In this regard, a two-step esterification and hydrolysis (hydrogenation) process for the production of cyclohexanol with carboxylic acid as entrapment agent has attracted wide attention of researchers, which has the advantages of good atomic economy and high production efficiency of cyclohexanol. Based on the cheap and stable acetic acid as reaction entrainer, there is a thermodynamic equilibrium between cyclohexene and acetic acid esterification. At the same time, the system has the characteristics of mismatch between reaction temperature and distillation temperature. Therefore, the process was enhanced by side-reactor column configuration. The optimum temperature of the reactor and the rectifying tower was set independently to improve the conversion rate of raw materials.

The paper is first based on Aspen Plus software, then a process model for the production of cyclohexyl acetate by side-reactor column configuration was established, and the influence of distillation pressure on the temperature of tower top and kettle was investigated. The optimum operating pressure of distillation was determined to be 30kPa, The side-reactor column configuration integration method is the integration of atmospheric pressure reaction and reduced pressure distillation. On this basis, the feeding amount of fixed acetic acid was 10kmol/h, and that of cyclohexene and cyclohexane was 10kmol/h and 2.5kmol/h. The conversion rate of fresh cyclohexene should be no less than 95%. The content of cyclohexyl acetate in tower kettle products is not less than 99.5% (w), and the influence of the main structural and operational parameters of the integration process on the total annual cost (TAC) was investigated. Simulation results show that the best process condition is: the reflux ratio 11.2, reboiler heat duty is 230 kw, theory of reaction rectifying column number 11, catalyst loading quantity is 1700 kg, number of distillation stages is 3, number of stripping stages is 4, two side reactor, the number of reactor spacer stages is 1, catalyst in the first reactor (top) side loading capacity is 500 kg, catalyst in the second side of the reactor (under) loading quantity is 1200 kg. Under these conditions, the side-reactor column configuration integration process had a minimum TAC of about 2.43×106 Yuan/a.

The above research results lay a foundation for the process amplification of cyclohexyl acetate in the integrated process of side-reactor column configuration.

Key words: cyclohexene; cyclohexanol; cyclohexyl acetate ; side-reactor column configuration; process simulation

目 录

摘 要 I

Abstract II

第一章 文献综述 1

1.1环己醇性质及用途 1

1.2环己醇合成工艺概述 1

1.2.1苯酚加氢法 1

1.2.2环己烷氧化法 2

1.2.3环己烯水合法 2

1.3乙酸环己酯工艺概述 4

1.4反应精馏技术研究进展 5

1.4.1传统反应精馏RD 5

1.4.2背包式反应精馏集成技术SRC 7

1.5本文的研究思路及内容 8

第二章 过程模拟与优化 10

2.1工艺流程 10

2.2热力学与反应动力学 10

2.2.1物性计算方法 10

2.2.2反应动力学模型 11

2.3优化目标 11

2.4结果讨论 12

2.4.1操作压力的影响 12

2.4.2催化剂装填量的影响 13

2.4.3精馏段塔板数的影响 14

2.4.4提馏段塔板数影响 15

2.4.5反应器台数的影响 15

2.4.6进料位置的影响 16

2.4.7反应器间隔的影响 17

2.4.8催化剂分配的影响 17

2.5本章小结 20

第三章 结论 21

致谢 22

参考文献 23

第一章 文献综述

1.1环己醇性质及用途

环己醇是一种无色易燃的油性液体,在冰点以下结晶为白色。固液态平衡温度为24℃(冰点为25.15℃),161.10℃时即可沸腾[1]。可以与大部分有机溶剂相互融合,互相溶解,不能稳定溶于水。有类似樟脑的气味,可以吸湿[2]。环己醇可以作为稳定剂用于肥皂,制造用于消毒的药膏和用于清洁的乳剂,用作多种有机物的溶剂,涂料中的添加剂,可用于皮革的脱脂、脱膜、干洗、抛光等等。环己醇也是农药和增塑剂的原料,还可以提升织物表面质感[3]。环己醇作为一种化工中间体具有重要的作用,主要用于制备环己酮、己二酸、己内酰胺、己二胺[4]

1.2环己醇合成工艺概述

请支付后下载全文,论文总字数:21224字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图