多酸基无机-有机杂化材料的设计合成、结构及CO2光催化还原性能的研究毕业论文
2022-01-06 20:37:28
论文总字数:49361字
摘 要
可见光驱使CO2还原转化为能源载体是目前缓解能源危机和温室效应最具前景的策略之一,而催化剂的发展被认为是实现这一转化过程的决定性因素。多金属氧酸盐(POMs)是一种具有半导体特性的离散性无机晶体材料,有着丰富的结构及良好的稳定性。然而,最引人注目的是它们具有优异的氧化还原性能以及可调的带隙结构,特别是[P4Mo6VO31]12- ({P4Mo6})多酸单元,在可见光下被证明是优良的固体酸催化剂。同时,基于{P4Mo6}结构单元,选取适当的有机配体用来构建新型的多酸基无机-有机杂化材料,通过清晰的晶体结构来研究结构与催化活性之间的构效关系以及阐明反应的机理就显得很有意义。
本文采用定向自组装合成策略,通过选用螯合/双齿含氮有机配体bbi和DABT(bbi = 1,1-(1,4-丁烷取代基)双(咪唑);DABT = 3,3’-二氨基-5,5’-双(1H-1,2,4-三氮唑)作为有机连接单元,在溶剂热的条件下合成了六个基于{P4Mo6}一维至三维多酸基化合物,并对它们合成、结构以及光催化CO2还原反应(CO2RR)、质子导电等性质进行了系统的研究。(C10N4H16)3{[Fe(H2O)2][Fe(H13P8Mo12O62)]}·8H2O (1),(C10N4H16)2.5{[Mn(H2O)2]2[Mn(H13P8Mo12O62)]}·10H2O (2),[Cd(H2O)2DABT]4[Cd(H7P4Mo6O31)2]·20H2O (3),(C10N4H16)2{[Co2(C10N4H14)][Co3(H2O)6][Co(H4P4Mo6O31)2]}·2H2O (4),(C10N4H16)[Zn(C10N4H15)]2[Zn(C10N4H14)][K2Zn(H2O)2][Zn(H4P4Mo6O31)2]·2H2O(5),[Cd(C10N4H15)2][Cd(H2O)][Cd(H8P4Mo6O31)2]·3H2O (6)。其中(1)和(2)为一维(1D)链状结构,(3)为二维(2D)层状结构,(4)-(6)为三维(3D)空间结构。此外,对于(4)-(6)的质子导电和光催化CO2RR性能也进行了研究。其中化合物(3)在98% RH和60 ℃条件下质子传导率达到1.55×10-4 S cm-1,化合物(5)在七小时后,CO2-CO的转换量累积达到92.64 μmol,即882 μmol g-1 h-1。
关键词:多金属氧酸盐 晶体结构 二氧化碳还原 质子导电
ABSTRACT
Visible light driving CO2 reduction into energy carrier is currently one of the most promising strategies to alleviate the energy crisis and greenhouse effect, and the development of catalysts is considered to be the decisive factor to achieve this conversion process. Polyoxometalates (POMs) are discrete inorganic crystal materials with semiconductor properties, which have a rich structure and good stability. However, the most striking is that they have excellent redox properties and adjustable band gap structure, especially [P4Mo6VO31]12- ({P4Mo6}) polyacid units, which have proven to be excellent solid acid catalysts under visible light . At the same time, based on the {P4Mo6} structural unit, appropriate organic ligands were selected to construct new polyacid-based inorganic-organic hybrid materials. It is meaningful to study the structure-activity relationship between structure and catalytic activity through a clear crystal structure and clarify the mechanism of the reaction
In this paper, by using the directional self-assembly synthesis strategy and selecting the chelated/bidentate nitrogen-containing organic ligand bbi and DABT (bbi = 1,1’-(1,4-butanediyl)bis(imidazole); DABT = 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole)) as the organic connection unit, six one-dimensional to three-dimensional {P4Mo6}-based compounds were synthesized under the solvent-thermal conditions , and their synthesis, structure, properties of photocatalytic CO2 reduction (CO2RR), proton conductivity and other properties were systematically studied. (C10N4H16)3{[Fe(H2O)2][Fe(H13P8Mo12O62)]}·8H2O (1),(C10N4H16)2.5{[Mn(H2O)2]2[Mn(H13P8Mo12O62)]}·10H2O (2),[Cd(H2O)2DABT]4[Cd(H7P4Mo6O31)2]·20H2O (3),(C10N4H16)2{[Co2(C10N4H14)][Co3(H2O)6][Co(H4P4Mo6O31)2]}·2H2O (4),(C10N4H16)[Zn(C10N4H15)]2[Zn(C10N4H14)][K2Zn(H2O)2][Zn(H4P4Mo6O31)2]·2H2O(5),[Cd(C10N4H15)2][Cd(H2O)][Cd(H8P4Mo6O31)2]·3H2O (6) Among them, (1) and (2) are 1D chain structures, (3) is 2D layered structures, and (4-6) are 3D structural. In addition, the proton conductivity and photocatalytic CO2RR properties of compounds (4-6) were also studied. Among them the proton conductivity of (3) reached 1.55 × 10-4 S cm-1 at 98% RH and 60 ℃, and the conversion amount of CO2-CO reached 92.64 μmol (882 μmol g-1 h-1) of (5) after seven hours.
KEYWORDS: Polyoxometalates; Crystal structures; CO2RR; Proton conduction
目录
摘 要 I
ABSTRACT II
第一章 文献综述 1
1.1多酸化学的历史发展 1
1.2多酸化学的应用 2
1.2.1多酸在催化领域的应用 2
1.2.2多酸在电催化水解制氢领域的应用 4
1.2.3在二氧化碳还原反应方面的应用 5
1.3本论文选题意义 7
第二章 {P4MO6}多酸基化合物的合成及结构 9
2.1实验试剂与实验仪器 9
2.1.1实验试剂 9
2.1.2实验仪器 9
2.2晶体化合物的合成 10
2.2.1 (C10N4H16)3{[Fe(H2O)2][Fe(H13P8Mo12O62)]}·8H2O (1)的合成 10
2.2.2 (C10N4H16)2.5{[Mn(H2O)2]2[Mn(H13P8Mo12O62)]}·10H2O (2)的合成 10
2.2.3 [Cd(H2O)2DABT]4[Cd(H7P4Mo6O31)2]·20H2O (3)的合成 10
2.2.4 (C10N4H16)2{[Co2(C10N4H14)][Co3(H2O)6][Co(H4P4Mo6O31)2]}·2H2O (4) 的合成 11
2.2.5 (C10N4H16)[Zn(C10N4H15)]2[Zn(C10N4H14)][K2Zn(H2O)2][Zn(H4P4Mo6O31)2]·2H2O (5) 的合成 11
2.2.6 [Cd(C10N4H15)2][Cd(H2O)][Cd(H8P4Mo6O31H8)2]·3H2O (6) 的合成 11
2.2.7 化合物的合成讨论 12
2.3化合物的晶体结构的测试与结构描述 12
2.3.1 (C10N4H16)3{[Fe(H2O)2][Fe(H13P8Mo12O62)]}·8H2O (1)的晶体结构 15
2.3.2 (C10N4H16)2.5{[Mn(H2O)2]2[Mn(H13P8Mo12O62)]}·10H2O (2)的晶体结构 16
2.3.3 [Cd(H2O)2DABT]4[Cd(H7P4Mo6O31)2]·20H2O (3)的晶体结构 18
2.3.4 (C10N4H16)2{[Co2(C10N4H14)][Co3(H2O)6][Co(H4P4Mo6O31)2]}·2H2O (4)的晶体结构 20
2.3.5 (C10N4H16)[Zn(C10N4H15)]2[Zn(C10N4H14)][K2Zn(H2O)2][Zn(H4P4Mo6O31)2]·2H2O (5)的晶体结构 23
2.3.6 [Cd(C10N4H15)2][Cd(H2O)][Cd(H8P4Mo6O31)2]·3H2O (6)的晶体结构 25
第三章 性质与表征 29
3.1质子导电性能的研究 29
3.2光催化二氧化碳还原性能研究 30
3.3红外光谱 31
3.4粉末X-射线衍射(PXRD) 32
3.5禁带宽度Eg的测定 33
3.6稳定性测试 34
第四章 总结与展望 42
4.1实验小结 42
4.2展望 42
参考文献 43
致谢 47
第一章 文献综述
1.1多酸化学的历史发展
如今多酸化学在配位化学研究中有重要的地位,已经成为了这个方向中非常有前途的研究领域。多金属氧酸盐(POMs)具有丰富的化学和物理性质,作为一种灵活的无机建筑单元,可广泛用于新材料的合成。早在20世纪90年代初,从Pope和Müller在1991年一篇预测了当前其爆炸似发展的评论起,POMs就开始普及了[1]。这一巨大的发展在1998年也得到了充分的证明,当时Hill组织的《化学评论》特别专题介绍了多酸化学所涵盖的许多领域的历史、发展和应用[2]。POMs是基于MOn多面体的集合,最常见的是八面体,通过角和边共享彼此连接所形成的,根据有无杂原子的引入,多酸通常可以分为同多酸([HxMyOz]n−;如七聚钼酸盐[Mo7O24]6-)和杂多酸([XxMmOy]q−;如X2M18O62, X=P,As,S,V)两大类[3-7]。
请支付后下载全文,论文总字数:49361字